A Combined Harris Hawks and Dragonfly Optimization Approach for Feature Selection in MLP-Based DDoS Attack Detection

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 70

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-8_014

تاریخ نمایه سازی: 21 اسفند 1403

چکیده مقاله:

In this paper, a new intrusion detection system (IDS) is presented to deal with distributed denial of service (DDoS) attacks. A combined algorithm based on Harris Hawks Optimization (HHO) and Dragonfly Algorithm (DA) is proposed to select relevant features and eliminate irrelevant and redundant features from the NSL-KDD dataset. The extracted features are presented to a multilayer perceptron (MLP) neural network. This network (as a classifier) divides the network traffic into two classes, normal and attack categories. Performance of the proposed model is evaluated with two standard and widely-used datasets in the field of intrusion detection: NSL-KDD and UNSW-NB۱۵. The results of the simulations clearly show the superiority of the proposed method compared to the previous methods in terms of critical evaluation criteria such as accuracy, precision, recall, and F-Measure. Specifically, the proposed method exhibited improvements of ۹۶.۹%, ۹۷.۶%, ۹۶%, and ۹۶.۸% in these metrics, respectively (compared to the baseline method). The main reason for these improvements is the ability of the combined algorithm to intelligently select the optimal features and reduce the dimensions of the data. This careful selection of features allows the MLP neural network to focus on critical information, increasing the classification accuracy and ultimately improving the performance of the intrusion detection system. This research showed that combining optimization algorithms and machine learning works well. So, it is effective for tackling DDoS attacks. It can lead to better intrusion detection systems. These systems will be more efficient and accurate.

نویسندگان

J. Ghasemi

Faculty of Technology and Engineering, University of Mazandaran, Babolsar, Iran

R. Salah-hassan

Biomedical Engineering Department, Al-Mustaqbal University, Hillah ۵۱۰۰۱, Iraq

K. Gorgani Firouzjah

Faculty of Technology and Engineering, University of Mazandaran, Babolsar, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Gaikwad D, Thool RC. Intrusion detection system using bagging with ...
  • Hamidi H. A combined fuzzy method for evaluating criteria in ...
  • Thepade S, Dindorkar M, Chaudhari P, Bang S. Enhanced face ...
  • Vishwakarma M, Kesswani N. DIDS: A Deep Neural Network based ...
  • نمایش کامل مراجع