Multi-Agent Reinforcement Learning for Strategic Bidding in Smart Markets

سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,132

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICEEE05_325

تاریخ نمایه سازی: 3 آذر 1392

چکیده مقاله:

In a deregulated electricity market, optimal bidding strategies are desired by market participants in order to maximize their individual profits, the optimal bidding strategy for a market participant is difficult to be determined by calculus based methods because of uncertainties and dynamic of electricity market. Power suppliers aim to satisfy two objectives: the maximization of their profit and their utilization rate. To meet with success their goals, they need to acquire a complex behavior by learning through a continuous exploiting and exploring process. Reinforcement learning theory provides a formal framework, along with a family of learning methods. In this project agent-based simulation is employed to study the power market operation under uniform price and discriminatory (pay-as-bid) market. Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a Reinforcement Learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this project; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. Reinforcement learning theory provides a formal framework, along with a family of learning methods. By new state-action definition in a five bus power system and considering SFE model for each player, the player’s strategies in different cases examined.

نویسندگان

Mahdi Imani

Engineering, University of Tehran

Mohammad Amin Tajodini

Engineering, University of Tehran

Ashkan Rahimikiyan

Associate professor of Electrical engineering, Collage of Engineering, University of Tehran,

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • J. Weber and T. Overbye, "A txo-1evel optimization problem for ...
  • S. Oren, "When is a pay-as bid preferable to unifor ...
  • HH. Song, C.-C. Liu, and J. Lawarree, "Decision making of ...
  • J. _ Lanont and S. Rajan, "Strategic bidding in energy ...
  • Transactions _ vo1. 12, pp. 1729-1733, 1997. ...
  • G. Gross, D. J. Finlay, and G. _ "Strategic bidding ...
  • G. B. Sheble, "Priced based operation in an auction market ...
  • J. Kumar and G. Sheble, "Auction market simulator for price ...
  • C. w. Richter Jr and G. B. Sheble, "Genetic algorithm ...
  • C. _ Richter Jr, G. B. Sheble, and D. Ashlock, ...
  • V. Krishna and V. Ramesh, "Intelligent agents for negotiations in ...
  • G. Xiong, T. Hashiyama, and S. Okuma, "An electricity supplier ...
  • J. Hu and N. P. We]Iman, "Nash Q-1earning for general-sum ...
  • T. Krause, G. Andersson, D. Ernst, E. Vdovina- Beck, R. ...
  • T. Krause, E. V. Beck, R. Cherkaoui, A. Germond, G. ...
  • نمایش کامل مراجع