Multi-Agent Reinforcement Learning for Strategic Bidding in Smart Markets
محل انتشار: پنجمین کنفرانس ملی مهندسی برق و الکترونیک ایران
سال انتشار: 1392
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 1,132
فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICEEE05_325
تاریخ نمایه سازی: 3 آذر 1392
چکیده مقاله:
In a deregulated electricity market, optimal bidding strategies are desired by market participants in order to maximize their individual profits, the optimal bidding strategy for a market participant is difficult to be determined by calculus based methods because of uncertainties and dynamic of electricity market. Power suppliers aim to satisfy two objectives: the maximization of their profit and their utilization rate. To meet with success their goals, they need to acquire a complex behavior by learning through a continuous exploiting and exploring process. Reinforcement learning theory provides a formal framework, along with a family of learning methods. In this project agent-based simulation is employed to study the power market operation under uniform price and discriminatory (pay-as-bid) market. Power suppliers are modeled as adaptive agents capable of learning through the interaction with their environment, following a Reinforcement Learning algorithm. The SA-Q-learning algorithm, a slightly changed version of the popular Q-Learning, is used in this project; it proposes a solution to the difficult problem of the balance between exploration and exploitation and it has been chosen for its quick convergence. Reinforcement learning theory provides a formal framework, along with a family of learning methods. By new state-action definition in a five bus power system and considering SFE model for each player, the player’s strategies in different cases examined.
کلیدواژه ها:
نویسندگان
Mahdi Imani
Engineering, University of Tehran
Mohammad Amin Tajodini
Engineering, University of Tehran
Ashkan Rahimikiyan
Associate professor of Electrical engineering, Collage of Engineering, University of Tehran,
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :