Artificial Intelligence: A Key to Law Enforcement Security and Crisis Management
محل انتشار: همایش بین المللی هوش مصنوعی و تمدن آینده
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 125
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ICAII01_123
تاریخ نمایه سازی: 19 اسفند 1403
چکیده مقاله:
Objective: This research examines the role of artificial intelligence (AI) and machine learning (ML) in predicting and preventing crises and the challenges associated with these technologies. Methodology: The research employs a systematic review method, utilizing the PRISMA framework to select and analyze relevant articles. This process includes identifying articles, screening, assessing quality, and extracting data. Findings: AI and ML algorithms are effective in analyzing big data, simulating crises, and identifying complex patterns. These technologies provide tools for predicting natural, economic, and social crises, as well as analyzing social behaviors. In law enforcement, AI and ML can play a significant role in predicting crimes, identifying suspicious behaviors, preventing cyber threats, and creating intelligent alert systems. The main challenges include poor data quality, algorithmic bias, privacy issues, and technological limitations. Conclusion: The use of AI and ML contributes to improving proactive protection and enhancing social security. However, addressing ethical challenges, strengthening technological infrastructures, and developing transparent and explainable algorithms are essential. These measures can increase public trust and the efficiency of these technologies in law enforcement.
کلیدواژه ها:
نویسندگان
Mahshid Eltemasi
Assistant Professor of Information Science & Knowledge Management
Hassan Behtooiy
University lecturer at the Police Sciences University Amin and the University of Applied Sciences, and Deputy for Research and Planning at the Faraja Higher Education Institute, Tehran.