Wavelet-Based Decision Tree Model with Entropy Index for Classifying Fall History Groups

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 160

فایل این مقاله در 9 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

NRSSPE09_068

تاریخ نمایه سازی: 16 اسفند 1403

چکیده مقاله:

This study investigates the classification of fall history using wavelet-based entropy features derived from center of pressure (COP) signals. Fall history data were collected from ۱۳۰ participants aged ۶۰-۸۱ years through detailed interviews and force plate measurements using standardized quiet standing protocols. Wavelet entropy analysis was applied to decompose COP signals into multiple frequency bands, followed by entropy calculation at each level and classification using an optimized decision tree algorithm. We achieved ۹۲% classification accuracy in distinguishing between fallers and non-fallers. This study highlights the potential of wavelet-based entropy measures for fall history classification and their clinical applications in fall risk assessment.

نویسندگان

Golara Amiri

M.Sc. in Sports Biomechanics, University of Mazandaran

Mansour Eslami

Associate Professor, Sports Biomechanics, University of Mazandaran

Rohollah Yousefpour

Associate Professor, Applied Mathematics, University of Mazandaran

Fatemeh Salari

Assistant Professor, Sports Biomechanics, University of Mazandaran