The Role of AI and Machine Learning in Supply Chain Optimization

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 87

فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJSET-2-2_001

تاریخ نمایه سازی: 12 اسفند 1403

چکیده مقاله:

Conventional supply chains are unable to meet the complexity and expectations of contemporary corporate operations in the fast-changing global economy of today. In response to these difficulties, companies are looking for artificial intelligence (AI) and machine learning (ML) (Higgins, O., Short, B. L., Chalup, S. K., & Wilson, R. L., ۲۰۲۳) more and more as potent tools to improve their supply chains.These technologies help companies to improve predictive maintenance procedures, increase supply chain visibility, accurately forecast demand with never-seen-before precision, and maximize operational expenses. By means of real-time data analysis, artificial intelligence and machine learning deliver companies pertinent information supporting rapid and smart judgments.Emphasizing demand forecasting, inventory optimization, predictive maintenance, and financial decision-making, this paper explores the transformational opportunities of advanced technology in supply chain management. This emphasizes the need to use big data to improve supply chain openness and lower geopolitical, natural catastrophe, and market volatility associated risks.Case studies of companies like Walmart (Harrison, ۲۰۱۹) and Siemens show how effectively artificial intelligence and machine learning increase operational efficiency, save costs, and boost financial growth. The paper investigates the long-term effects of artificial intelligence and machine learning on supply chains (Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S, ۲۰۲۴) concluding that businesses adopting these technologies are more fit to manage future challenges, achieve sustainable development, and keep a competitive advantage in a sophisticated and linked market.Conventional supply chains are unable to meet the complexity and expectations of contemporary corporate operations in the fast-changing global economy of today. In response to these difficulties, companies are looking for artificial intelligence (AI) and machine learning (ML) (Higgins, O., Short, B. L., Chalup, S. K., & Wilson, R. L., ۲۰۲۳) more and more as potent tools to improve their supply chains. These technologies help companies to improve predictive maintenance procedures, increase supply chain visibility, accurately forecast demand with never-seen-before precision, and maximize operational expenses. By means of real-time data analysis, artificial intelligence and machine learning deliver companies pertinent information supporting rapid and smart judgments. Emphasizing demand forecasting, inventory optimization, predictive maintenance, and financial decision-making, this paper explores the transformational opportunities of advanced technology in supply chain management. This emphasizes the need to use big data to improve supply chain openness and lower geopolitical, natural catastrophe, and market volatility associated risks. Case studies of companies like Walmart (Harrison, ۲۰۱۹) and Siemens show how effectively artificial intelligence and machine learning increase operational efficiency, save costs, and boost financial growth. The paper investigates the long-term effects of artificial intelligence and machine learning on supply chains (Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. R., & Verma, S, ۲۰۲۴) concluding that businesses adopting these technologies are more fit to manage future challenges, achieve sustainable development, and keep a competitive advantage in a sophisticated and linked market.

نویسندگان

Zahra Ahmadirad

University of Missouri Kansas City, Finance Department.USA

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Annanth, V. K., Abinash, M., & Rao, L. (2021). Intelligent ...
  • Belhadi, A., Mani, V., Kamble, S. S., Khan, S. A. ...
  • Funda, V., & Francke, E. (2024). Artificial intelligence-powered decision support ...
  • Harrison, V. (2019). Legitimizing private legal systems through CSR communication: ...
  • Higgins, O., Short, B. L., Chalup, S. K., & Wilson, ...
  • Khrais, L. T. (2020). Role of artificial intelligence in shaping ...
  • Kiedrowicz, M. (2016). Location with the use of the RFID ...
  • Kumar, P., Choubey, D., Amosu, O. R., & Ogunsuji, Y. ...
  • Liulys, K. (2019). Machine learning application in predictive maintenance. Electronic ...
  • Negru, I. (2024). The influence of Artificial Intelligence on supply ...
  • Shah, N., Engineer, S., Bhagat, N., Chauhan, H., & Shah, ...
  • Singh, M., & Jain, A. (2024). Global value chain to ...
  • Thomas, V. (2024). Nature, Health, and Geopolitical Crises. Risk and ...
  • Wamba-Taguimdje, S. L., Wamba, S. F., Kamdjoug, J. R. K., ...
  • نمایش کامل مراجع