Improving the accuracy of intrusion detection systems by optimizing random forest algorithm parameters using genetic algorithm
محل انتشار: دومین سمپوزیوم منطقه ای نوآوری در علم وفناوری
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 199
فایل این مقاله در 5 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
RESIST02_034
تاریخ نمایه سازی: 9 اسفند 1403
چکیده مقاله:
In the field of cyber security, intrusion detection is one of the vital issues that requires high accuracy and efficiency. However, traditional models usually face challenges such as high false alarm rate and inability to identify new attacks. In this article, an improvement model based on genetic algorithms and random forest is presented, which aims to improve the accuracy and efficiency of intrusion detection systems. The proposed method includes the use of the genetic algorithm to optimize the parameters of the random forest model, which is the optimal setting for the intrusion detection model. The results show that the proposed model has been able to diagnose with ۹۹.۹۶% accuracy. Precision ۹۹.۹۶%, Recall ۹۹.۹۶% and the F۱-Score equal to ۹۹.۹۵%, has a much better performance than other existing models. These results show the high power and efficiency of the model in real environments and provide new directions for researchers in this field to further improve intrusion detection systems.
کلیدواژه ها:
نویسندگان
Mahdi Karimi
Department of Knowledge and Information Science, Islamic Azad University, Hamedan, Iran
Mohammad Mehdi Shirmohammadi
Computer Engineering Department, Hamedan Branch, Islamic Azad University, Hamedan, Iran
SaeedReza Alikhani
Department of Knowledge and Information Science, Islamic Azad University, Hamedan, Iran