Predicting blood beta-hydroxybutyric acid in dairy cow herds through machine learning-based feature selection: On-farm data basis
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 73
فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_KLST-13-1_008
تاریخ نمایه سازی: 8 اسفند 1403
چکیده مقاله:
In dairy industry, high producing fresh dairy cows commonly experience adipose tissue mobilization to support their energy requirements. Precise prediction of blood beta-hydroxybutyric acid (BHBA) concentration could significantly enhance the cow health and welfare, therefore, this study aimed to identify the key factors influencing BHBA levels and develop predictive models based on nutritional and performance data in fresh dairy cows. In this trial, four years data from ۳۲۵ fresh Holstein cows were collected and analyzed. Various machine learning algorithms, including decision trees, random forests, Lasso and ridge regression models, as well as boosting and bagging techniques, were employed to estimate BHBA levels and identify the influential factors. These algorithms were assessed using the coefficient of determination (R²). The random forest model demonstrated the lowest error, with a mean absolute error of ۰.۰۲, while the linear model exhibited the highest error, with a mean absolute error of ۱.۲۵. It was found that factors including milk production, previous lactation days in milk (DIM), sampling day, body weight change, BCS at parturition, and the amount and type of dietary fat, as well as overall diet quality were highly significant for estimating blood BHBA levels (P<۰.۰۵). Notably, the results indicated that cows with a BCS of ۳ or lower, as well as those with a score of ۳.۷۵, are crucial categories for predicting BHBA. Additionally, the level and type of fatty acids in the diet, particularly lauric (C۱۲:۰), palmitic (C۱۶:۰), linolenic (C۱۸:۳), and oleic acids (C۱۸:۱), had significant influence on BHBA in fresh cows (P<۰.۰۵). These findings highlight the importance of integrating these critical factors into predictive models to enhance metabolic health monitoring and improve dairy herd management practices.
کلیدواژه ها:
نویسندگان
Daniel Moodi
Department of Animal Science, College of Agriculture, Shahid Bahonar University of Kerman, Iran
Amin Khezri
Department of Animal Science, College of Agriculture, Shahid Bahonar University of Kerman, Iran
Abbas Naserian
Department of Animal science, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
Mostafa Ghazizadeh-Ahsaee
Department of Computer Engineering, Shahid Bahonar University of Kerman, Iran
Omid Dayani
Department of Animal Science, College of Agriculture, Shahid Bahonar University of Kerman, Iran
Vahid Bahrampour
Department of Agricultural Engineering, National University of Skills. Tehran. Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :