Experimental Investigation and Modelling of Total Chlorophyll Extraction from Mixed Microalgae Using Neural Network

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 98

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_PCBR-8-1_002

تاریخ نمایه سازی: 8 اسفند 1403

چکیده مقاله:

Algae represent a diverse group of photosynthetic and microscopic entities that are recognized as significant contributors to biomass generation and the synthesis of valuable biological compounds. Chlorophyll, which is the principal pigment present within these organisms, is integral in the process of light absorption and its subsequent transformation into chemical energy, thereby playing a crucial role in the metabolic pathways that result in the production of oxygen and organic matter. In the present study, a neural network model was created to determine the best chlorophyll extraction method, incorporating factors like initial algae concentration (۲, ۴, and ۶ g/L), temperature (۳۰, ۴۰, and ۵۰ °C), and time. By training the model on a substantial portion of the dataset (۷۰%) and configuring it with ۸ hidden neurons, significant results were obtained correlation coefficient of ۰.۹۹۴۲ and a minimal error of ۰.۰۱۷۸, showcasing the model's effectiveness. Among the various factors investigated, the duration of extraction was recognized as the preeminent factor influencing the efficacy of chlorophyll extraction, as corroborated by the results of the model. Therefore, the neural network model created in this study will facilitate the discovery of more efficient techniques for extracting chlorophyll from microalgae in the future.

نویسندگان

Leila Nedaei

Biotechnology Research Centre, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

Hanieh Shokrkar

Biotechnology Research Centre, Faculty of Chemical Engineering, Sahand University of Technology, Tabriz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :