Optimizing Biodiesel Yield and Fuel Properties from Waste Avocado Oil: A Comparative Study of RSM and ANFIS Learning Models

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 108

فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_PCBR-8-1_006

تاریخ نمایه سازی: 8 اسفند 1403

چکیده مقاله:

The quest for alternative energy sources, driven by the challenges of fossil fuels, has led to the development of biofuels. This study focuses on producing biodiesel from waste avocado oil through transesterification. Initially, oil was extracted from the peels and seed of avocado pear using an extraction technique. The extracted oil was then pre-treated with methanol and sulfuric acid (H₂SO₄) to reduce its free fatty acid content to less than ۱.۰ wt%. This study compares two expert systems, Adaptive Neuro-Fuzzy Inference System (ANFIS), and Response Surface Methodology (RSM), for modeling and optimizing biodiesel production from avocado oil. The performance of these optimization tools was evaluated using statistical indices. The results showed that ANFIS outperformed RSM with a low error value, the Standard Error of Prediction (SEP)=۰.۷۶۵۳, the Mean Absolute Error (MAE)=۰.۱۴۱۳, the Root Mean Squared Error (RMSE)=۰.۴۱۰۳, the Average Absolute Deviation (AAD)=۰.۲۹۵۵%, the Mean Squared Error (MSE)=۰.۱۶۸۳, and a high coefficient of determination (R² = ۰.۹۹۷۶). Both models predicted high biodiesel yields (>۸۵%), with ANFIS achieving a slightly higher yield (۸۸.۲۱%) compared to RSM (۸۶.۲۰%). The properties of the biodiesel produced under optimized conditions were compared with American Society for Testing and Materials (ASTM) D۶۷۵۱ and European Norm (EN) ۱۴۲۱۴ standards and were found to be within acceptable limits, indicating the fuel’s suitability.

کلیدواژه ها:

نویسندگان

Simeon Okechukwu Eze

Department of Petroleum and Gas Engineering, University of Lagos, Nigeria

Kelechi Kaycee Amamba

Department of Electrical Electronics Engineering, Kent State University, USA

Laju Ogedegbe Jeremi

Department of Industrial Environmental Engineering, Universiti Teknologi PETRONAS, Malaysia

Abbas Aliyu

Department of Chemical Engineering, Federal University of Technology, Minna, Nigeria

Chukwuka Solomon Ejikeme

Department of Chemical Engineering, Federal University of Technology, Owerri, Nigeria

Matthew Dickson Akoh

Department of Chemical Engineering, Federal university of Technology Minna, Niger state, Nigeria

Adewale Olamide Adedapo

Department of Chemical Engineering, Ladoke Akintola University of Technology, Nigeria

Aisha Onyinoyi Abbas

Department of Industrial Environmental Engineering, Universiti Teknologi PETRONAS, Malaysia

Philip Lekan Ibraheem

Department of Chemical Engineering, Lagos state University, Nigeria

Goodness Ekene Hillary

Department of Information Technology, Federal university of technology, Owerri, Nigeria

Evelyn Iyere Adisa

Department of Environmental Design, University of Lagos, Nigeria

Abdurrahman Idris

Department of Mechatronics engineering and Robotics, MIREA Russian technological University, Moscow, Russia

Azubuike Progress Ojinika

Department of Mechanical Engineering, Federal University of Petroleum Resources, Effurun, Nigeria

Bethel Chijioke Iheanacho

Federal University of Technology Owerri, Nigeria

Sunday Onoja John

Department of Chemical engineering, Federal University of technology Minna, Nigeria

Melagne Agnimel Jean Baptiste

Department of oil and gas transport and refinery operation engineering, Kazan National Research Technological University

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Achakulwisut P, Erickson P, Guivarch C, Schaeffer R, Brutschin E, ...
  • Keera ST, El Sabagh SM, Taman AR. Castor oil biodiesel ...
  • نمایش کامل مراجع