Application of Artificial Neural Network and Response Surface Methodology Approach for Modeling In-vitro Removal of Cu(ii) Ion From Human Blood Plasma Using a Medicinal Biomass

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 77

فایل این مقاله در 24 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_PCBR-8-1_007

تاریخ نمایه سازی: 8 اسفند 1403

چکیده مقاله:

Industrial activities have recently propelled the excessive introduction of toxic metals into the environment, leading to diverse health challenges. Therefore, it is apt to detoxify the blood transport system (blood plasma). The present study employed a batch technique to conduct in-vitro Cu(ii) removal from human blood plasma onto Opuntia fragalis leaves (OFL). The adsorption process was optimized utilizing response surface methodology (RSM) and artificial neural network (ANN) models. The ۳-D response surface graph was utilized to identify the interaction influence of key factors on the percentage removal of Cu(ii) ion. The adsorbent dose (۱.۵ mg), initial concentration (۳۰ mg/L), pH (۶.۰۳), and contact duration (۶۵ mins) were proposed as the best parameters using the ANN prediction profiler at ۹۸.۴۵ % removal of Cu(ii) ion from blood plasma which is similar to RSM values. The quadratic model demonstrated an excellent fit for the experimental data with a coefficient of correlation (R۲) of ۰.۸۶۲۷ and an F-value of ۷.۷۳. The ANN model derived from the same design demonstrated adequate predictive performance of Cu(ii) ion removal, which was reasonably predicted with an excellent correlation between the predicted and experimental values (R۲ = ۰.۹۱۶۰). The developed models were evaluated utilizing the root mean square error (RMSE), and coefficient of correlation (R۲) to identify the best ANN topology. Furthermore, the algorithm with the lowest RMSE (۰.۲۴۱) and highest R۲ was observed to be trained best using the Levenberg-Marquardt algorithm. Additionally, ANN results were deemed more reliable than RSM results and OFL has demonstrated excellent Cu(ii) ion removal from the human blood plasma.

نویسندگان

Abuchi Elebo

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Francis Uchenna Anumonye

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Mbah Basil

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Ndubueze Chijindu Ifeanyi

West Africa Soy Industries Limited (WASIL)

Vincent Akandi Johnson

Department of Chemistry, Faculty of Sciences, Nigeria Police Force, Kano State

Isaac Omole Areguamen

Department of Chemistry, Faculty of Sciences, Federal University of Dutsin-Ma, Katsina State

Awwal Abdullahi Adamu

Department of Chemistry, Faculty of Physical Sciences, Ahmadu Bello University, Zaria, Nigeria

Amarachi Maureen Udoh

Department of Nano Science, National Agency for Science and Engineering Infrastructure, Abuja, Nigeria

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :