Using neural network to predict relative permeability andcapillary pressure diagrams
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 21
فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CCOCDSTS03_032
تاریخ نمایه سازی: 8 اسفند 1403
چکیده مقاله:
Determining the fundamental properties of oil reservoir rocks and the parameters governing fluid flowthrough porous media is a complex aspect of reservoir characterization. Among the most critical reservoirrock properties are relative permeability of gas-oil and water-oil systems, which serve as essential inputs forreservoir simulation models. Traditionally, laboratory core analysis is considered the gold standard forobtaining accurate information about reservoir rocks. However, the high costs and time-consuming nature ofcore analysis, coupled with the limited availability of core samples, especially in the early stages of fielddevelopment, necessitate the exploration of alternative techniques for predicting these essential properties.This project aims to develop a methodology to reduce uncertainty in relative permeability and capillarypressure, utilizing neural networks to predict the corresponding parameter curves
کلیدواژه ها:
نویسندگان
Mojtaba Azizi
Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology,P.O. Box ۱۶۷۶۵-۳۴۵۴, Tehran, Iran
Ahmadreza Borjikhani
Faculty of Chemical Engineering, University of Tehran, Tehran, Iran
Seyed Karam Saedi
Faculty of Technology management and industrial management, Islamic Azad University Science andResearch Branch, Tehran, Iran.
Abbas Abdolmaleki
Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology,P.O. Box ۱۶۷۶۵-۳۴۵۴, Tehran, Iran