Using neural network to predict relative permeability andcapillary pressure diagrams

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 21

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CCOCDSTS03_032

تاریخ نمایه سازی: 8 اسفند 1403

چکیده مقاله:

Determining the fundamental properties of oil reservoir rocks and the parameters governing fluid flowthrough porous media is a complex aspect of reservoir characterization. Among the most critical reservoirrock properties are relative permeability of gas-oil and water-oil systems, which serve as essential inputs forreservoir simulation models. Traditionally, laboratory core analysis is considered the gold standard forobtaining accurate information about reservoir rocks. However, the high costs and time-consuming nature ofcore analysis, coupled with the limited availability of core samples, especially in the early stages of fielddevelopment, necessitate the exploration of alternative techniques for predicting these essential properties.This project aims to develop a methodology to reduce uncertainty in relative permeability and capillarypressure, utilizing neural networks to predict the corresponding parameter curves

نویسندگان

Mojtaba Azizi

Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology,P.O. Box ۱۶۷۶۵-۳۴۵۴, Tehran, Iran

Ahmadreza Borjikhani

Faculty of Chemical Engineering, University of Tehran, Tehran, Iran

Seyed Karam Saedi

Faculty of Technology management and industrial management, Islamic Azad University Science andResearch Branch, Tehran, Iran.

Abbas Abdolmaleki

Faculty of Chemistry and Chemical Engineering, Malek Ashtar University of Technology,P.O. Box ۱۶۷۶۵-۳۴۵۴, Tehran, Iran