Upwind Implicit Scheme for the Numerical Solution of Stochastic Advection–Diffusion Partial Differential Equations

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 83

فایل این مقاله در 31 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_GADM-8-2_004

تاریخ نمایه سازی: 7 اسفند 1403

چکیده مقاله:

Stochastic partial differential equations (SPDEs) are significant in various fields such as epidemiology, mechanics, microelectronics, chemistry, and finance. Obtaining analytical solutions for SPDEs is either difficult or impossible; therefore, researchers are very interested in effective numerical methods for studying the behavior of these equations. In this paper, we introduce a stochastic finite difference (SFD) scheme for the numerical solution of the It\^{o} stochastic advection--diffusion equation. We discuss the consistency, stability, and convergence of the scheme, and we also determine its order of convergence. Finally, to validate the effectiveness and accuracy of the SFD scheme, we analyze the numerical results and compare them with those from existing SFD schemes.

کلیدواژه ها:

Ito stochastic partial differential equation ، Finite difference ، Consistency ، stability ، Convergence

نویسندگان

Mehran Namjoo

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Mehran Aminian

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Ali Mohebbian

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Mehdi Karami

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

Hossein Salmei

Department of Mathematics, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. Zakai, On the optimal filtering of diffusion processes, Zeitschrift ...
  • R. Mikulevicius, BL. Rozovskii, Stochastic Navier–Stokes equations for turbulent flows, ...
  • DA. Dawson, EA. Perkins, Measure-valued processes and renormalization of branching ...
  • L. Roques, D. Allard, S. Soubeyrand, Spatial statistics and stochastic ...
  • JD. Murray, Mathematical biology: II: spatial models and biomedical applications, ...
  • EJ. Allen, SJ. Novosel, Z. Zhang, Finite element and difference ...
  • Approximation of stochastic advection diffusion equations with finite difference scheme [مقاله ژورنالی]
  • Analysis of the stability and convergence of a finite difference approximation for stochastic partial differential equations [مقاله ژورنالی]
  • D. Baleanu, M. Namjoo, A. Mohebbian, A. Jajarmi, A weighted ...
  • M. Karami, A. Mohebbian, S. Razaghian, M. Namjoo, M. Aminian, ...
  • P. E. Kloeden, E. Platen, Numerical solution of stochastic differential ...
  • M. Bishehniasar, AR. Soheili, Approximation of stochastic advection-diffusion equation using ...
  • C. Roth, Difference methods for stochastic partial differential equations, Journal ...
  • M. Dehghan, Weighted finite difference techniques for the one-dimensional advection-diffusion ...
  • J. Wang, X. Pang, F. Yin, J. Yao, A deep ...
  • G. Prato, L. Tubaro, Stochastic partial differential equations and applications, ...
  • MW. Yasin, MS. Iqbal, N. Ahmed, A. Akgül, A. Raza, ...
  • N. Kaur, K. Goyal, An adaptive wavelet optimized finite difference ...
  • L. Guo, H. Wu, T. Zhou, Normalizing field flows: Solving ...
  • NH. Sweilam, DM. ElSakout, MM. Muttardi, High-resolution schemes for stochastic ...
  • NH. Sweilam, DM. El-Sakout, MM. Muttardi, Compact finite difference method ...
  • JW. Thomas, Numerical partial differential equations: finite difference methods, Springer ...
  • Khan MA, Ullah S, Kumar S, A robust study on ...
  • Kumar S, Kumar A, Samet B, Dutta H, A study ...
  • Kumar S, Chauhan RP, Momani S, Hadid S, Numerical investigations ...
  • Ghanbari B, Kumar S, A study on fractional predator-prey–pathogen model ...
  • Kumar S, Kumar R, Momani S, Hadid S, A study ...
  • Veeresha P, Prakasha DG, Kumar S, A fractional model for ...
  • نمایش کامل مراجع