Temporal Dynamics in Microwave Breast Imaging: Enhancing Cancer Detection with Transformers
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 128
فایل این مقاله در 8 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
CMELC01_026
تاریخ نمایه سازی: 5 اسفند 1403
چکیده مقاله:
Microwave breast imaging (MWBI) constitutes a well-promising alternative to conventional imaging modalities such as mammography and ultrasound, which could offer a non-invasive, low-cost, radiation-free screening modality. This work aims to determine the capability of exploiting temporal dynamics in MWBI data by state-of-the-art deep learning schemes, especially transformer architectures. We present a comparative study of several ML and DL techniques, including the Random Forest, Support Vector Machine, Logistic Regression, ۱D CNNs, and transformers, to detect breast cancer. The results showed that transformer models would depict complicated temporal dependencies with the highest accuracy of ۹۱.۲۰% and sensitivity of ۹۸.۸۰%, while outperforming all the other methods. It also evidences that temporal information plays a crucial role in MWBI signals and positions transformers as a strong solution for the early diagnosis of breast cancer. The study will open up possibilities for advanced DL techniques within an MWBI system, especially in resource-constrained settings.
کلیدواژه ها:
نویسندگان
Abdolkarim Saeedi
Islamic Azad University, South Tehran Branch, Iran
Maryam Saeedi
UCD School of Computer Science, University College Dublin, Dublin ۴, Ireland