A new model for lung cancer prediction based on differential evolution algorithm and effective feature selection

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 84

فایل این مقاله در 23 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_KJMMRC-14-1_019

تاریخ نمایه سازی: 17 بهمن 1403

چکیده مقاله:

Lung cancer is one of the most dangerous and fatal diseases worldwide. By using advanced machine learning techniques and optimization algorithms, early prediction and diagnosis of this disease can be achieved. Early identification of lung cancer is an important approach that can increase the survival rate of patients. In this paper, a novel method for lung cancer prediction is proposed, which combines two important techniques: Support Vector Machine (SVM) and Differential Evolution (DE) algorithm. Firstly, using the differential evolution algorithm, important and suitable features for lung cancer prediction are extracted. Then, using the SVM classifier, a classification model is built for prediction. The proposed approach is implemented on two lung cancer databases and achieves a good level of accuracy, which is compared with four other methods: C۴.۵ decision tree, neural network, Naive Bayes classifier, and logistic regression. The proposed model, with high accuracy and generalization power, is a suitable model for lung cancer detection and can serve as a strong decision support system alongside medical professionals.

نویسندگان

Amid Khatibi Bardsiri

Computer Engineering Department, Bardsir Branch, Islamic Azad University, Bardsir, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alharbi, A. (۲۰۱۸). An automated computer system based on genetic ...
  • Alsinglawi, B., Alshari, O., Alorjani, M., Mubin, O., Alnajjar, F., ...
  • Chauhan, A. (۲۰۲۰). Detection of lung cancer using machine learning ...
  • Chen, H.-L., Huang, C.-C., Yu, X.-G., Xu, X., Sun, X., ...
  • Cherif, W. (۲۰۱۸). Optimization of K-NN algorithm by clustering and ...
  • Faisal, M. I., Bashir, S., Khan, Z. S., Khan, F. ...
  • Hashi, E. K., Zaman, M. S. U., & Hasan, M. ...
  • Liu, W., Liu, X., Luo, X., Wang, M., Han, G., ...
  • Lynch, C. M., Abdollahi, B., Fuqua, J. D., de Carlo, ...
  • Maleki, N., Zeinali, Y., Niaki, S. T. A. (۲۰۲۱). A ...
  • Odajima, K., & Pawlovsky, A. P. (۲۰۱۴). A detailed description ...
  • Opara, K. R., & Arabas, J. (۲۰۱۹). Di erential Evolution: ...
  • Pathoee, K., Rawat, D., Mishra, A., Arya, V., Rafsanjani, M. ...
  • Patra, R. (۲۰۲۰). Prediction of lung cancer using machine learning ...
  • Price, K. V., Storn, R. M., & Lampinen, J. A. ...
  • Puneet, & Chauhan, A. (۲۰۲۰, ۶-۸ Nov. ۲۰۲۰). Detection of ...
  • Quanyang, W., Yao, H., Sicong, W., Linlin, Q., Zewei, Z., ...
  • Radhika, P., Nair, R. A., Veena, G. (۲۰۱۹). A comparative ...
  • Sa yari, A., Javidan, R. (۲۰۱۷). Predicting lung cancer survivability ...
  • Siddiqui, E. A., Chaurasia, V., Shandilya, M. (۲۰۲۳). Classi cation ...
  • Sim, J.-a., Kim, Y., Kim, J. H., Lee, J. M., ...
  • Suthaharan, S. (۲۰۱۶). Support vector machine. Machine learning models and ...
  • Varchagall, M., Nethravathi, N. P., Chandramma, R., Nagashree, N., & ...
  • Venkatesh, S. P., & Raamesh, L. (۲۰۲۲). Predicting Lung Cancer ...
  • Vikas, P. K., & Kaur, P. (۲۰۲۱). Lung cancer detection ...
  • Wu, J., Zan, X., Gao, L., Zhao, J., Fan, J., ...
  • Yuan, H., Wu, Y., Dai, M. (۲۰۲۳). Multi-Modal Feature Fusion-Based ...
  • نمایش کامل مراجع