Spatial Modeling and Monitoring Electricity Consumption using Generalized Likelihood Ratio Control Chart
محل انتشار: ماهنامه بین المللی مهندسی، دوره: 38، شماره: 7
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 39
فایل این مقاله در 14 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJE-38-7_001
تاریخ نمایه سازی: 15 بهمن 1403
چکیده مقاله:
Energy monitoring using statistical process control (SPC) methods makes it more straightforward to identify patterns and trends to decrease energy consumption more effectively. The literature review of energy consumption monitoring with SPC techniques generally focuses on the temporal aspect of variation. However, due to the spatial nature of energy data, enhancing these methods to incorporate temporal and spatial aspects would improve the accuracy of the diagnostic information, underscoring simultaneous detection of the time and location of changes. Thus, the main novelty of this work is the spatial modeling and spatiotemporal monitoring of electricity consumption. For this purpose, the study used actual electricity consumption data from eight western cities of Mazandaran province in the north of Iran for spatial modeling using spatial regression models and a geographically weighted regression (GWR) model. The prediction performance evaluation of spatial models showed GWR as an appropriate model, whose coefficients were monitored through a generalized likelihood ratio (GLR) chart in phase II. The GLR chart detected two changes in consumption, and its performance was confirmed based on the statements from electricity experts relying on meteorological information and floating population data. Furthermore, the performance of the GLR chart was evaluated using out-of-control average run length (ARL۱) across three different scenarios. The findings indicate that the GLR chart can effectively detect any sizes of shifts (δ), ranging from ۵% to ۱۰۰% of the model's parameter value. Additionally, with larger values of δ, the ARL۱ decreases, resulting in faster detection of changes in the model.
کلیدواژه ها:
نویسندگان
M. Khazaie Poul
Department of Industrial Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
H. Farughi
Department of Industrial Engineering, Faculty of Engineering, University of Kurdistan, Sanandaj, Iran
Y. Samimi
Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :