Real-Time Data-Driven Microstructural Defect Detection in Scanning Electron Microscopy Images of Additively Manufactured Ti۶Al۴V using Advanced Deep Learning Method

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 138

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJE-38-7_008

تاریخ نمایه سازی: 15 بهمن 1403

چکیده مقاله:

The automated detection of microstructural defects in additively manufactured Ti۶Al۴V materials presents significant challenges due to the lack of comprehensive datasets and the variability of defect types. This study introduces a novel methodology for addressing these challenges by developing a Microstructural Defect Dataset (MDD) specifically tailored for scanning electron microscopy (SEM) images. We trained and evaluated multiple YOLOv۸ models—YOLOv۸n, YOLOv۸s, YOLOv۸m, YOLOv۸l, and YOLOv۸x—using this dataset to assess their effectiveness in detecting various defects. The principal results demonstrate that YOLOv۸m achieves a balanced trade-off between precision and recall, making it suitable for reliable defect identification across diverse defect types. YOLOv۸s, on the other hand, excels in efficiency and speed, particularly for detecting 'Pore' defects. The study also highlights the limitations of YOLOv۸n in detecting specific defect types and the computational challenges associated with YOLOv۸l and YOLOv۸x. Our methodology and findings contribute to the scientific understanding of automated defect detection in additive manufacturing. The development of the MDD and the comparative evaluation of YOLOv۸ models advance the state of knowledge by providing a robust framework for detecting microstructural defects. Future research should focus on expanding the dataset and exploring advanced AI techniques to enhance detection accuracy and model generalization.

نویسندگان

M. Hassanzadeh Talouki

Mechanical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran

M. J. Mirnia

Mechanical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran

M. Elyasi

Mechanical Engineering Department, Babol Noshirvani University of Technology, Babol, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Mehrpouya M, Dehghanghadikolaei A, Fotovvati B, Vosooghnia A, Emamian SS, ...
  • Jing R, Zhang W, Liu Y, Li W, Li Y, ...
  • Wang Z, Yang S, Peng Z, Gao Z. Effect of ...
  • Redmon J. Yolov۳: An incremental improvement. arXiv preprint arXiv:۱۸۰۴۰۲۷۶۷. ۲۰۱۸ ...
  • Günther J, Krewerth D, Lippmann T, Leuders S, Tröster T, ...
  • نمایش کامل مراجع