Using Machine Learning Algorithms to Improve the Efficiency of Industrial Automation Systems

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 108

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ICNABS01_023

تاریخ نمایه سازی: 15 بهمن 1403

چکیده مقاله:

The use of machine learning algorithms can significantly enhance the efficiency of industrial automation systems. These techniques enable the prediction of problems and the optimization of processes by analyzing large datasets and identifying hidden patterns. For example, deep learning algorithms can identify quality defects by processing images captured from production lines, assisting engineers in taking quicker corrective actions. This not only reduces machine downtime but also significantly lowers production costs. Furthermore, machine learning can improve predictive maintenance. By analyzing data related to equipment performance, algorithms can identify failure patterns before they occur. This capability allows factory managers to adjust maintenance schedules to prevent sudden breakdowns, thereby increasing the overall productivity of the system. Ultimately, the integration of artificial intelligence with industrial automation paves the way for the creation of smart and flexible manufacturing environments that can continuously adapt to market changes and customer needs.

نویسندگان

Samad jafarzadeh dizajy

Department of Electrical Engineering, Sharif University of Technology, Tehran, Iran