روشی بهبودیافته به منظور طبقه بندی طیفی مکانی تصاویر ابرطیفی به کمک الگوریتم های ژنتیک وزن دار و شبکه عصبی
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 95
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_GIS-16-4_001
تاریخ نمایه سازی: 14 بهمن 1403
چکیده مقاله:
سابقه و هدف: فناوری سنجش از دور ابرطیفی، در دو دهه گذشته، شاهد پیشرفت چشمگیری بوده است. این پیشرفت در طراحی و ساخت سنجنده ها و همچنین در توسعه و اجرای روش های پردازش داده بسیار مشهود است. امروزه بیشتر تحقیقات، در زمینه فناوری سنجش از دور ابرطیفی، بر طبقه بندی این تصاویر تاکید دارد. روش های طبقه بندی تصاویر ابرطیفی در دو دسته طبقه بندی طیفی یا مبتنی بر پیکسل و طبقه بندی طیفی– مکانی یا مبتنی بر شیء قرار می گیرند. در این تحقیق، به طبقه بندی طیفی – مکانی تصویر ابرطیفی، در محیطی شهری، پرداخته شده است. ازآنجاکه محیط های شهری، از نظر عناصر به کاررفته در آنها، ویژگی های پیچیده ای دارند، داده های ابرطیفی به شناسایی و استخراج و تولید نقشه از عناصر سازنده آنها کمک موثری می کنند. شناسایی مواد گوناگون در محیط های شهری اهمیت بسیاری در زمینه کاربردهای گوناگون، همچون ارتباط تلفن های همراه، واقعیت مجازی، معماری و مدل سازی شهری و برنامه ریزی و مدیریت شهرها دارد.مواد و روش ها: در این تحقیق، برای ارزیابی روش پیشنهادی از دو تصویر ابرطیفی پاویا و برلین، که جزء تصاویر معیار در حوزه سنجش از دور ابرطیفی است، استفاده شد. در روش پیشنهادی، ابتدا ابعاد تصویر ابرطیفی به کمک الگوریتم PCA کاهش می یابد؛ سپس ده ویژگی مکانی میانگین، انحراف معیار، درجه تباین، یکنواختی، همبستگی، نبود تشابه، انرژی، آنتروپی، تبدیل موجک و فیلتر گابور از روی باندهای کاهش یافته استخراج می شود. در ادامه، الگوریتم ژنتیک وزن دار بر ویژگی های طیفی و مکانی به دست آمده اعمال می شود و در انتها، ویژگی های حاصل به کمک الگوریتم MLP طبقه بندی می شود.نتایج و بحث: در آزمون های انجام شده در زمینه الگوریتم ژنتیک، کروموزوم ها دارای ژن هایی برابر با تعداد ویژگی های طیفی و مکانی اند. در این آزمون ها، میزان تقاطع و جهش به ترتیب برابر با ۵/۰ و ۰۵/۰ در نظر گرفته شد. همچنین، برای ایجاد تناسب بین دو پارامتر دقت و زمان محاسبات، تعداد جمعیت اولیه ۳۰ و حداکثر تعداد تکرار، برای توقف، ۱۰۰ در نظر گرفته شد. البته در عمل، درمورد هر دو تصویر ابرطیفی با توجه به استفاده از شرط فعال برای توقف الگوریتم، روند تکرار به مرحله ۱۰۰ نمی رسد و قبل از آن، الگوریتم به وضعیت پایدار می رسد و متوقف می شود. الگوریتم طبقه بندی MLP با سه لایه پنهان، شامل و ۶ و ۸ نورون، اجرا و با پانصد تکرار ارزیابی شد. روش طبقه بندی پیشنهادی بیان شده با الگوریتم های SVM، MLP و MSF مقایسه شد. در هر دو تصویر ابرطیفی، نقشه حاصل از روش پیشنهادی در مقایسه با سایر الگوریتم ها مناطق یکنواخت تری را دربرمی گیرد. روش پیشنهادی، در تصویر پاویا، باعث افزایش ۱۳، ۷ و ۶درصدی و در تصویر برلین، باعث افزایش ۹، ۶ و ۵درصدی پارامتر ضریب کاپا، در قیاس با به ترتیب الگوریتم های SVM، MLP و MSF شده است. دلیل این افزایش دقت روش پیشنهادی می تواند استفاده از اطلاعات نزدیک ترین همسایگی و دو مرحله کاهش ابعاد باشد.نتیجه گیری: در این تحقیق، روشی جدید به منظور طبقه بندی طیفی – مکانی تصاویر ابرطیفی معرفی شد. در روش پیشنهادی، ابتدا ابعاد تصویر ابرطیفی کاهش یافت و ده ویژگی، به منزله اطلاعات نزدیک ترین همسایگی ها، از باندهای کاهش یافته استخراج شد. در ادامه، الگوریتم ژنتیک وزن دار روی ویژگی های به دست آمده، به منظور کاهش وابستگی بین آنها، اعمال شد. الگوریتم ژنتیک یکی از کارآمدترین و موثرترین روش ها در کاهش ابعاد تصاویر ابرطیفی است. در الگوریتم باینری ژنتیک، هر کروموزوم دارای مقادیر یک و صفر است؛ درحالی که در الگوریتم ژنتیک وزن دار، مقادیر وزنی بین صفر و یک است. روش پیشنهادی روی دو تصویر ابرطیفی پاویا و برلین اجرا شد که آزمایش ها برتری کمی و کیفی به کارگیری این روش را نشان می دهد. کم بودن دقت نتایج در تصویر برلین می تواند به دلیل پیچیدگی این تصویر، در مقایسه با تصویر پاویا باشد.
کلیدواژه ها:
نویسندگان
داود اکبری
دانشیار گروه مهندسی نقشه برداری، دانشکده مهندسی، دانشگاه زابل، زابل، ایران
علی اشرفی
استادیار گروه جغرافیا، دانشکده ادبیات و علوم انسانی، دانشگاه بیرجند، بیرجند، ایران
مصطفی یعقوب زاده
دانشیار گروه علوم و مهندسی آب، دانشکده کشاورزی، دانشگاه بیرجند، بیرجند، ایران
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :