Simplifying Radiomics Workflow for Predicting Grade of Glioma: An Approach for Rapid and Reproducible Radiomics
محل انتشار: مجله فیزیک و مهندسی پزشکی، دوره: 15، شماره: 1
سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JBPE-15-1_004
تاریخ نمایه سازی: 14 بهمن 1403
چکیده مقاله:
Background: Radiomics with single Region of Interest (ROI) and single-sequence Magnetic Resonance Imaging (MRI) may facilitate the segmentation reproducibility and radiomics workflow due to a time-consuming and complicated delineation of that in multi-sequence MRI images.Objective: This study aimed to evaluate the performance of the radiomics approach in grading glioma based on a single-ROI delineation as Gross Tumor Volume (GTV) in a single – sequence as contrast-enhanced T۱-weighted MRI.Material and Methods: This retrospective study was conducted on contrast-enhanced T۱ weighted (CE T۱W) MRI images of ۶۰ grade II and ۶۰ grade III glioma patients. The GTV regions were manually delineated. Radiomics features were extracted per patient. The segmentation reproducibility of the robust features was evaluated in several repetitions of GTV delineation. Finally, a linear Support Vector Machine (SVM) assessed the classification performance of the robust features.Results: Four significant robust features were selected for training the model (P-value<۰.۰۵). The average Intraclass Correlation Coefficient (ICC) of the four features was ۰.۹۶ in several repetitions of GTV delineation. The linear SVM model differentiated grades II and III of glioma with an Area Under the Curve (AUC) of ۰.۹ in the training group. Conclusion: High predicting power for glioma grading can be achieved with radiomics analysis by a single-ROI delineated on a single-sequence MRI image (CE T۱W). In addition, single-ROI segmentation can increase radiomics reproducibility.
کلیدواژه ها:
نویسندگان
Yunus Soleymani
Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
Peyman Sheikhzadeh
Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
Mohammad Mohammadzadeh
Department of Radiology and Radiotherapy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
Davood Khezerloo
Department of Radiology, Faculty of Alliance Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :