Simplifying Radiomics Workflow for Predicting Grade of Glioma: An Approach for Rapid and Reproducible Radiomics

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119

فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JBPE-15-1_004

تاریخ نمایه سازی: 14 بهمن 1403

چکیده مقاله:

Background: Radiomics with single Region of Interest (ROI) and single-sequence Magnetic Resonance Imaging (MRI) may facilitate the segmentation reproducibility and radiomics workflow due to a time-consuming and complicated delineation of that in multi-sequence MRI images.Objective: This study aimed to evaluate the performance of the radiomics approach in grading glioma based on a single-ROI delineation as Gross Tumor Volume (GTV) in a single – sequence as contrast-enhanced T۱-weighted MRI.Material and Methods: This retrospective study was conducted on contrast-enhanced T۱ weighted (CE T۱W) MRI images of ۶۰ grade II and ۶۰ grade III glioma patients. The GTV regions were manually delineated. Radiomics features were extracted per patient. The segmentation reproducibility of the robust features was evaluated in several repetitions of GTV delineation. Finally, a linear Support Vector Machine (SVM) assessed the classification performance of the robust features.Results: Four significant robust features were selected for training the model (P-value<۰.۰۵). The average Intraclass Correlation Coefficient (ICC) of the four features was ۰.۹۶ in several repetitions of GTV delineation. The linear SVM model differentiated grades II and III of glioma with an Area Under the Curve (AUC) of ۰.۹ in the training group. Conclusion: High predicting power for glioma grading can be achieved with radiomics analysis by a single-ROI delineated on a single-sequence MRI image (CE T۱W). In addition, single-ROI segmentation can increase radiomics reproducibility.

نویسندگان

Yunus Soleymani

Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran

Peyman Sheikhzadeh

Department of Nuclear Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran

Mohammad Mohammadzadeh

Department of Radiology and Radiotherapy, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

Davood Khezerloo

Department of Radiology, Faculty of Alliance Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More ...
  • Soleymani Y, Jahanshahi AR, Hefzi M, Fazel Ghaziani M, Pourfarshid ...
  • Lambin P, Rios-Velazquez E, Leijenaar R, Carvalho S, Van Stiphout ...
  • Haarburger C, Müller-Franzes G, Weninger L, Kuhl C, Truhn D, ...
  • Soleymani Y, Jahanshahi AR, Pourfarshid A, Khezerloo D. Reproducibility assessment ...
  • Cho HH, Lee SH, Kim J, Park H. Classification of ...
  • Jang K, Russo C, Di Ieva A. Radiomics in gliomas: ...
  • Singh G, Manjila S, Sakla N, True A, Wardeh AH, ...
  • Xie T, Chen X, Fang J, Kang H, Xue W, ...
  • Kobayashi K, Miyake M, Takahashi M, Hamamoto R. Observing deep ...
  • Chaddad A, Sabri S, Niazi T, Abdulkarim B. Prediction of ...
  • Bae S, Choi YS, Ahn SS, Chang JH, Kang SG, ...
  • Qin JB, Liu Z, Zhang H, Shen C, Wang XC, ...
  • Jeong J, Wang L, Ji B, Lei Y, Ali A, ...
  • Das IJ, Andersen A, Chen ZJ, Dimofte A, Glatstein E, ...
  • Clark K, Vendt B, Smith K, Freymann J, Kirby J, ...
  • Beer JC, Tustison NJ, Cook PA, Davatzikos C, Sheline YI, ...
  • Da-Ano R, Masson I, Lucia F, Doré M, Robin P, ...
  • Bettinelli A, Branchini M, De Monte F, Scaggion A, Paiusco ...
  • Di Leo G, Sardanelli F. Statistical significance: p value, ۰.۰۵ ...
  • Toubiana D, Maruenda H. Guidelines for correlation coefficient threshold settings ...
  • Xiong Z, Cui Y, Liu Z, Zhao Y, Hu M, ...
  • Togao O, Hiwatashi A, Yamashita K, Kikuchi K, Mizoguchi M, ...
  • Zhao SS, Feng XL, Hu YC, Han Y, Tian Q, ...
  • Zacharaki EI, Wang S, Chawla S, Soo Yoo D, Wolf ...
  • Sun L, Zhang S, Chen H, Luo L. Brain Tumor ...
  • نمایش کامل مراجع