Application of Machine Learning and Metaheuristic Optimizer Algorithm for Crash Severity Prediction in the Urban Road Network
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 12، شماره: 4
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 108
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-12-4_006
تاریخ نمایه سازی: 11 بهمن 1403
چکیده مقاله:
This paper predicts the severity of crashes based on the analysis of multiple variables and using machine learning methods. For this purpose, data related to the years ۲۰۱۲ to ۲۰۲۴ of Tempe city in the state of Arizona USA was used. Features were selected using the metaheuristic method. Then, by using decision tree and artificial neural network, the classification of the severity of crashes was carried out. Based on the metrics, decision tree with an overall accuracy of ۵۴% was the optimal. Finally, using the permutation feature importance method, the optimal model was interpreted. The results show that the characteristics of the year with ۰.۲۲ and the spatial characteristics with ۰.۱۱ and the collision manner with ۰.۱ have a higher importance in predicting the severity of crashes on urban roads.
کلیدواژه ها:
نویسندگان
Morteza Zanjireh
Computer Engineering Department, Imam Khomeini International University, Qazvin, Iran
Farzad Morady
Civil Engineering Department, Imam Khomeini International University, Qazvin, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :