A General and Flexible Channel Decoding Approach Based on Probabilistic Programming Language

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 21

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_MSEEE-3-3_002

تاریخ نمایه سازی: 11 بهمن 1403

چکیده مقاله:

Channel coding is a vital component within digital telecommunications, helping to deal with unwanted factors like noise and enabling the establishment of a more robust communication link. Among the most renowned coding schemes are linear block codes, for which a variety of decoding methods have been proposed in recent years. This paper demonstrates how a linear block coding problem can be expressed as a Probabilistic Graphical Model (PGM). We then explain how Probabilistic Programming Languages (PPLs), which are tools for solving such PGMs, can be used to decode this type of coding. Employing the Figaro programming language, as a PPL, we have simulated the decoding of several famous linear block codes and found that the results of our proposed method closely match those of existing techniques. Our approach offers several advantages, such as the flexibility to utilize diverse inference methods, the ability to choose between hard and soft decoding dynamically, and the implementation of a wide range of coding techniques. PPLs also enable the adjustment of decoding algorithm parameters and the estimation of channel conditions, ultimately enhancing the receiver's adaptability to varying channel conditions. Finally, we discuss the advantages and disadvantages of our proposed method.

کلیدواژه ها:

Channel Decoding ، Linear Block Code (LBC) ، Probability ، Probabilistic Graphical Model (PGM) ، Probabilistic Programming Language (PPL) ، Bit-Error Rate (BER). Nomenclature

نویسندگان

Mohammad Sadegh Rostami

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Ali Shahzadi

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

Morteza Dorrigiv

Faculty of Electrical and Computer Engineering, Semnan University, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Kumar N, Kedia D, Purohit G (۲۰۲۳) A review of ...
  • Ali MM, Hashim SJ, Chaudhary MA, Ferré G, Rokhani FZ, ...
  • Sunny J, Ameenudeen PE, Kumar RH (۲۰۲۲) Design of Machine ...
  • Luo FL, Zhang CJ (۲۰۱۷) Signal processing for ۵G: Algorithms ...
  • Wang J, Tang C, Huang H, Wang H, Li J ...
  • Li S, Zhou J, Huang Z, Hu X (۲۰۲۱) Recognition ...
  • Guo J, Cao C, Shi D, Chen J, Zhang S, ...
  • Singels R (۲۰۱۶) The application of Probabilistic Graphical Models to ...
  • Ścibior A, Ghahramani Z, Gordon AD (۲۰۱۶) Practical probabilistic programming ...
  • Obeid AK, Bruza PD, Wittek P (۲۰۱۹) Evaluating probabilistic programming ...
  • Yadav A, Kakde S, Khobragade A, Bhoyar D, Kamble S ...
  • Ly A, Yao YD (۲۰۲۱) A review of deep learning ...
  • Carlson AB, Crilly PB, Rutledge JC (۲۰۰۲) Communication systems : an ...
  • Kumar RD, Vishvaksenan KS (۲۰۲۰) Interference cancellation in cognitive radio-based ...
  • Goldsmith A (۲۰۰۵) Wireless communications, Cambridge University Press ...
  • Tanenbaum AS, Wetherall DJ (۲۰۱۳) Computer Networks, Pearson ...
  • Fanari L, Iradier E, Bilbao I, Cabrera R, Montalban J, ...
  • Tomlinson M, Tjhai CJ, Ambroze MA, Ahmed M, Jibril M ...
  • Fanari L, Iradier E, Bilbao I, Cabrera R, Montalban J, ...
  • Krapu C, Borsuk M (۲۰۱۹) Probabilistic programming: A review for ...
  • Le Bras R, Arora N, Kushida N, Mialle P, Bondár ...
  • Lake BM, Salakhutdinov R, Tenenbaum JB (۲۰۱۵) Human-level concept learning ...
  • Ruttenberg B, Kellogg L, Pfeffer A (۲۰۱۶) Probabilistic Programming for ...
  • Farnoudkia H, Purutçuoglu V (۲۰۱۹) Copula Gaussian graphical modeling of ...
  • Alabady SA, Mohd Salleh MF, Al-Turjman F (۲۰۱۸) LCPC error ...
  • Koike-Akino T, Wang Y (۲۰۲۱) Protograph-Based Design for QC Polar ...
  • Sadlier RJ, Humble TS (۲۰۱۶) Superdense Coding Interleaved with Forward ...
  • Sarnin SS, Kadri N, Mozi AM, Wahab NA, Naim NF ...
  • Giordano AA, Levesque AH (۲۰۱۵) BER performance of BPSK in ...
  • Karimi-Lenji A, Houshmand M, Zarmehi F (۲۰۱۷) A high-performance belief ...
  • Old J, Rispler M (۲۰۲۳) Generalized Belief Propagation Algorithms for ...
  • Habib S, Mitchell DGM (۲۰۲۳) Reinforcement Learning for Sequential Decoding ...
  • Fang M (۲۰۲۳) An Improved Min-Sum Polar Code Decoding Algorithm. ...
  • Huang L, Zhang H, Li R, Ge Y, Wang J ...
  • Qin Z, Fei Z, Huang J, Wang Y, Xiao M, ...
  • Song D, Ren J, Wang L, Chen G (۲۰۲۲) Designing ...
  • Jeevangi S, Jawaligi S, Patil V (۲۰۲۲) Deep Learning-based SNR ...
  • Venkateswarlu C, Rao NV (۲۰۲۲) Optimal channel estimation and interference ...
  • Khazali A, Bozorgchenani A, Tarchi D, Shayesteh MG, Kalbkhani H ...
  • Naik C (۲۰۲۲) Computational Intelligence Algorithms For Energy Optimization Problems ...
  • نمایش کامل مراجع