Asset-liability management for with-profit life insurance policies: A novel multi-stage stochastic programming model
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 55
فایل این مقاله در 15 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMF-4-2_006
تاریخ نمایه سازی: 7 بهمن 1403
چکیده مقاله:
Asset-liability management (ALM) is a critical issue for insurance companies because the premiums received from policyholders should be invested according to regulatory frameworks while providing suitable profitability, and simultaneously, the insurer should fulfill its obligations to policyholders on time. Our focus is on participating (with-profit) life insurance policies, where policyholders not only receive a guaranteed profit but also participate in the return of the insurer's investment-portfolio. Due to the risks of death and surrender, uncertainty in asset returns, the broad range of insurance products and regulations, it is difficult to make optimal decisions. In this paper, we aim to present a new multi-stage stochastic programming ALM model for with-profit life insurance policies. Compared to existing models that involve some simplifications, our model incorporates more details and is closer to reality. Specifically, our model is multi-stage and updates the amount of policies investment reserves based on the realized return of the investment-portfolio. Evaluation of the model across a variety of datasets confirms the effectiveness of the proposed model.
کلیدواژه ها:
Asset-liability management ، participating (with-profit) life insurance policies ، Multi-stage stochastic programming ، scenario ، Value-of-stochastic-solution
نویسندگان
Farnaz Hooshmand
Department of Mathematics and Computer Science, Amirkabir University of Technology, Tehran, Iran
Mitra Ghanbarzadeh
Personal Insurance Research Department, Insurance Research Center, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :