Stability of impulsive fractional stochastic integro-differential equations with state dependent delay and Poisson jumps by using Mainardi’s function

سال انتشار: 1404
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 37

فایل این مقاله در 35 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJNAO-15-32_009

تاریخ نمایه سازی: 6 بهمن 1403

چکیده مقاله:

In this work, the stability results for a nonlinear mathematical model are derived, and the power system is realized by utilizing fractional calculus theory. The fixed point theorem is used to establish sufficient conditions for the existence of a mild solution and the stability of a nonlinear impul-sive fractional stochastic integro-differential equation with state-dependent delays with Mainardi’s function in a Hilbert space. Numerical simulations are provided to validate the obtained theoretical results. The proposed model supports (i) predicting the instability of synchronization between generators and the lines and (ii) stabilizing the disturbance that occurs in synchronization among generators and the lines.

نویسندگان

C. Mattuvarkuzhali

Department of Mathematics, Veltech Multitech Dr Rangarajan Dr. Sakunthala Engi-neering college,Avadi - ۶۰۰۰۰۶۲, Tamil Nadu, India.

I. Silambarasan

Department of Mathematics, Veltech Multitech Dr Rangarajan Dr. Sakunthala Engi-neering college,Avadi - ۶۰۰۰۰۶۲, Tamil Nadu, India.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ahmed, H.M. Non-linear fractional integro-differential systems with non-local conditions, IMA ...
  • Balasubramaniam, P. Kumaresan, N. Ratnavelu K. and Tamilala-gan, P. Local ...
  • Balasubramaniam, P. and Tamilalagan, P. Approximate controllability of a class ...
  • Bahguna, D. Sakthivel, R. and Chandha, A. Asymptotic stability of ...
  • Benchohra, M. Litimein, S. and Guerekata, G.M.N. On fractional integro-differential ...
  • Evans, L.C. An introduction to stochastic differential equations, Berke-ley, CA:University ...
  • Gard, T.C. Introduction to stochastic differential equations, Mono-graphs and Textbooks ...
  • Guo, Z. and Zhu, J. Existence of mild solutions for ...
  • Kilbas, A.A. Srivastava, H.M. and Trujillo, J.J. Theory and application ...
  • Z. Li, W. Zhan and Xu, L. Stochastic differential equations ...
  • Liu, L. and Caraballo, T. Well-posedness and dynamics of a ...
  • Ma, Y.K., Arthi, G. and Anthoni, S.M. Exponential stability behavior ...
  • Mao, X. Stochastic differential equations and applications, Chichester, UK: Horwood ...
  • Milano, F. and Zarate-Minano, R. A systematic method to model ...
  • Miller, K.S. and Ross, B. An introduction to the fractional ...
  • Oksendal, B. Stochastic differential equations, ۵th ed. Berlin, Germany: Springer, ...
  • Prato, G.D. and Zabczyk, J. Stochastic equations in infinite dimen-sions, ...
  • Podlubny, I. Fractional differential equations, mathematics in sciences and engineering, ...
  • Renu, R. and Dwijendra, N.P.Existence results for a class of ...
  • Sakthivel, R. Revathi, P. and Mahumov, N.I. Asymptotic stability of ...
  • Suganya, S. Arjunan, M.M. and Trujillo, J.J. Existence results for ...
  • Tan. L. Exponential stability of fractional-stochastic differential equa-tions with distributed ...
  • Tamilalagan, P. and Balasubramaniam, P. The solvability and optimal controls ...
  • Zhou, Y. Basic theory of fractional differential equations. Singapore: World ...
  • نمایش کامل مراجع