Multivariate modeling of the Fenton process for enhanced COD removal and low sludge generation in landfill leachate treatment

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 18

فایل این مقاله در 6 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ARWW-11-2_004

تاریخ نمایه سازی: 2 بهمن 1403

چکیده مقاله:

Biological treatment methods are not practical when it comes to landfill leachate treatment. Fenton as a physiochemical pretreatment technique is used in this research to increase the BOD/COD ratio. Conventionally, the main purpose of Fenton reaction has been the removal of organic pollutants, but in this paper, two other factors including sludge to iron ratio (SIR) and organic removal to sludge ratio (ORSR) are examined to generate low amounts of sludge as well. For the design of the experimental procedure, central composite design was used to not only minimize the required tests, but also observe the interactions between factors. Therefore, pH, ,  dosage and reaction time were considered as critical parameters while COD removal rate, SIR, and ORSR were introduced as targets. In order to have a clearer understanding of the process, multivariate modeling was applied to three targets to provide better predictions of the reaction. According to the statistical results, models can acceptably predict the target responses with R۲ above ۰.۹۵ and standard error and F-values were within suitable ranges. To reach high COD removal rates, the critical factors were  and  while for lower SIR and higher ORSR, the role of pH and  were more significant. The reaction time was not a determining factor based on our observations for all three targets.

نویسندگان

Nader Biglarijoo

Department of Civil Engineering, School of Civil Engineering, Semnan University, Semnan, Iran.

Amin Shams

Civil Engineering Department, School of Civil Engineering, Semnan University, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :