The application of an improved artificial neural network model for prediction of Cu and Au concentration in the porphyry copper-epithermal gold deposits, case study: Masjed Daghi, NW Iran
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 98
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJMGE-58-4_001
تاریخ نمایه سازی: 1 بهمن 1403
چکیده مقاله:
Modeling of geochemical data to predict elements is done with different methods. The proposed method in this research is the use of an intelligent model and pathfinder elements. In this study, drilling and sampling were done in two porphyry and epithermal mineralization of the Masjed Daghi porphyry copper deposit, and we used the data from the porphyry mineralization to predict copper and the data from the epithermal mineralization to predict gold. By using geochemical data and performing correlation and sensitivity analyses, copper and gold pathfinder elements (Pb, Zn, Ag, Mo, As) were determined. Then, using the data of pathfinder elements and an intelligent artificial neural network model, we predict the grade of gold and copper elements. The data of pathfinder elements were used as input and the grade of gold and copper elements were used as output of the model. In this research, the optimization of the artificial neural network is done using several optimization algorithms such as simulated annealing algorithm (SAA), firefly algorithm (FA), invasive weed optimization algorithm (IWO) and shuffled frog leaping algorithm (SFLA). Comparing the results showed that ANN-SAA (Combining ANN with SAA) performs better than other built models. This superiority was evident both in the porphyry and epithermal mineralization. R۲ and MSE of ANN-SAA model for Cu prediction were ۰.۸۲۷۵ and ۰.۰۳۰۳ for training data, ۰.۷۳۵۷ and ۰.۰۳۷۱ for testing data respectively. Also, R۲ and MSE of ANN-SAA model for Au prediction were ۰.۶۷۱۳ and ۰.۰۴۶۳ for training data, ۰.۷۰۴۰ and ۰.۰۳۳۳ for testing data respectively.
کلیدواژه ها:
Prediction of Cu and Au ، Artificial Neural Network ، Evolutionary algorithms ، Arasbaran metallurgical zone ، Porphyry copper deposits
نویسندگان
Habibollah Bazdar
Department of Mining Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
Ali Imamalipour
Department of Mining Engineering, Faculty of Engineering, Urmia University, Urmia, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :