Enhancing Text Extraction from Scanned Medical Documents Using Large Language Models

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 117

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DSAS03_050

تاریخ نمایه سازی: 20 دی 1403

چکیده مقاله:

Accurate text extraction from scanned medical documents is essential for data management and clinical decision-making. This study evaluates Large Language Models (LLMs) as an enhancement to traditional Optical Character Recognition (OCR) methods. By leveraging language and context, LLMs offer improved accuracy and relevance in text interpretation. We compared the EasyOCR model and the multimodal "gpt-۴o-mini" LLM on a dataset of ۱۱۰ medical transcript samples. Performance was assessed by comparing extracted texts against clinical data embeddings, using cosine similarity for semantic accuracy. The OCR model achieved an F۱-score of ۰.۵۹, while the LLM scored ۰.۷۰, demonstrating LLMs' potential to advance text extraction in healthcare.