Enhancing Survival Analysis of Recurrent Events with Transformers: A Financial Prediction Approach

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 105

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DSAS03_049

تاریخ نمایه سازی: 20 دی 1403

چکیده مقاله:

Recent deep learning models like WTT-RNN, Deep Recurrent Survival Analysis (DRSA) and CmpXRnnSurv-AE have advanced survival analysis but struggle with long-range dependencies and time-varying relationships in financial data, especially for irregular events like credit defaults. To overcome this, we propose a Transformer-based model for survival analysis of recurrent events, focusing on variable gap times between events. Using self-attention mechanisms, the model captures complex patterns in event sequences without predefined temporal assumptions. Time-encoding techniques account for dynamic gap times, and the model is trained with Cox partial likelihood and a custom survival loss to handle censored data. Applied to the Credit Card Payment Default Prediction dataset, our model outperforms WTT-RNN, Deep Recurrent Survival Analysis (DRSA) and CmpXRnnSurv-AE in predictive accuracy, validated by the Concordance Index (C-index), making it a promising solution for survival analysis in financial settings.