Designing Automated Diagnostic Processes for Knee Injuries in Healthcare Organizations Using Deep Learning and MRI Images

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 25

نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

DSAS03_046

تاریخ نمایه سازی: 20 دی 1403

چکیده مقاله:

Recent technological advancements have significantly transformed the diagnostic processes in healthcare organizations. The creation of automated diagnostic systems for knee injuries using deep learning and MRI imaging represents a substantial improvement in healthcare service quality. These systems allow for swift and accurate analysis of MRI images, facilitating precise identification and classification of knee injuries. Given the vast amount of medical data managed by healthcare institutions, such automation enhances operational efficiency and reduces response times. However, the successful implementation of these systems requires effective integration with existing Hospital Information Systems (HIS) and Picture Archiving and Communication Systems (PACS). This integration should be designed to optimize workflows and ensure the secure and efficient management of patient data.