Advancing Automated Diagnosis of Knee Injuries with Deep Learning and MRI Data through Data-Driven Medical Image Analysis
محل انتشار: سومین سمینار تخصصی علم داده ها و کاربردهای آن
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 99
نسخه کامل این مقاله ارائه نشده است و در دسترس نمی باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
DSAS03_043
تاریخ نمایه سازی: 20 دی 1403
چکیده مقاله:
The integration of data science in medical imaging has opened new avenues for improving diagnostic accuracy. In this study, we propose a deep learning model for the automated diagnosis of knee injuries using MRI data. Our model processes MRI scans and generates diagnostic reports for injuries to the Posterolateral Corner (PLC), Lateral Collateral Ligament (LCL), Posterior Cruciate Ligament (PCL), and knee cartilage. Preliminary results show promising accuracy in detecting these injuries, suggesting that this approach can enhance diagnostic efficiency and reduce human error in interpreting complex MRI data. This method could support clinicians by offering faster, more reliable insights into knee injury assessments.
کلیدواژه ها: