بهبود عملکرد پیش بینی های مالی با ترکیب مدلهای خطی و غیرخطی خودرگرسیون میانگین متحرک انباشته و شبکه های عصبی مصنوعی

سال انتشار: 1387
نوع سند: مقاله ژورنالی
زبان: فارسی
مشاهده: 61

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ECOR-8-2_005

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

دقت پیش بینی از مهمترین عوامل موثر در انتخاب روش پیش بینی است. امروزه به رغم وجود روشهای متعدد پیش بینی، هنوز پیش بینی دقیق مالی کار چندان ساده ای نبوده و اکثر محققان درصدد بکارگیری و ترکیب روشهای متفاوت به منظور حصول نتایج دقیق تر می باشند. در حالت کلی انتخاب موثرترین روش به منظور پیش بینی، کار بسیار دشواری می باشد. بسیاری از محققان روشهای خطی و غیرخطی را به منظور حصول نتایج دقیق تر با یکدیگر ترکیب کرده اند چرا که اولا در عمل تعیین خطی و غیرخطی بودن یک سری زمانی کار دشواری است ثانیا سریهای زمانی دنیای واقع بندرت کاملا خطی و یا غیرخطی هستند. مدلهای خودرگرسیون میانگین متحرک انباشته (ARIMA) و شبکه های عصبی مصنوعی(ANNs) به ترتیب از جمله دقیق ترین مدلهای خطی و غیرخطی در پیش بینی سریهای زمانی می باشند. در این مقاله به منظور بهره گیری از مزایای منحصر به فرد هر یک از روشهای مدل سازی خطی و غیرخطی و حصول نتایج دقیقتر، روش ترکیبی مدل های خودرگرسیون میانگین متحرک انباشتهو شبکه های عصبی مصنوعی به منظور پیش بینی های مالی پیشنهاد شده اند. مقایسه نتایج حاصله بیانگر آنست که مدل تلفیقی نسبت به مدلهای اریما (ARIMA) و شبکه های پرسپترون چندلایه (MLP) نتایج دقیقتری در پیش بینی نرخ ارز(یورو در مقابل ریال) ارائه نموده است.

کلیدواژه ها:

Exchange rate ، forecasting ، ARIMA model ، Artificial Neural Networks (ANNs) Model ، Hybrid Methods ، مدلهای خودرگرسیون میانگین متحرک انباشته (ARIMA) ، شبکه های عصبی مصنوعی (ANNs) ، مدل های ترکیبی ، بازارهای مالی ، پیش بینی نرخ ارز

نویسندگان