A Scalable Method for Real-Time Facial Emotion Recognition using an Artificial Neural Network and Polynomial Equation

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 125

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_IJWR-7-4_004

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

Facial emotion recognition has recently attracted considerable interest due to its wide range of applications. It plays a crucial role in supporting individuals with autism spectrum disorders and improving interactions between humans and computers. The ability to execute these applications in real-time is essential. The architecture of the model and the computational resources available are the key determinants of inference time. Consequently, the development of a real-time solution requires a concentrated effort on these elements. In this paper, we present a scalable approach that utilizes EfficientNetV۲, chosen for its operational efficiency. Our methodology involves resolution scaling based on a polynomial equation, which ensures real-time performance across various computational resources and model configurations. This scalable technique employs a polynomial equation to identify the optimal resolution for designated inference times, specifically adapted to our hardware and model specifications. By implementing the polynomial equation for resolution scaling, we created two variants of EfficientNetV۲. Our findings from the KDEF dataset indicate that the proposed EfficientNetV۲ can accurately classify images in real time on our hardware.

کلیدواژه ها:

Real-time facial emotion recognition ، Deep Learning ، EfficientNetV۲ ، Imbalanced Datasets ، Resolution scaling

نویسندگان

Omid Ghadami

Department of Computer Engineering, University of Science and Culture, Tehran, Iran

Alireza Rezvanian

Department of Computer Engineering, University of Science and Culture, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Ghadami, A. Rezvanian, and S. Shakuri, “Scalable Real-time Emotion Recognition ...
  • K. Chowdary, T. N. Nguyen, and D. J. Hemanth, “Deep ...
  • R. H. Lee and A. Wong, “Timeconvnets: A deep time ...
  • Jaiswal and G. C. Nandi, “Robust real-time emotion detection system ...
  • Kratzwald, S. Ilić, M. Kraus, S. Feuerriegel, and H. Prendinger, ...
  • Wang, J. Huang, J. Zhu, M. Yang, and F. Yang, ...
  • Tan and Q. Le, “Efficientnetv۲: Smaller models and faster training,” ...
  • T. Lopes, E. De Aguiar, A. F. De Souza, and ...
  • Y. Huang et al., “A study on computer vision for ...
  • Al Chanti and A. Caplier, “Deep learning for spatio-temporal modeling ...
  • Vignesh, M. Savithadevi, M. Sridevi, and R. Sridhar, “A novel ...
  • Pramerdorfer and M. Kampel, “Facial Expression Recognition using Convolutional Neural ...
  • Yao, Y. Wan, H. Ni, and B. Xu, “Action unit ...
  • Barra, L. De Maio, and S. Barra, “Emotion recognition by ...
  • Arriaga, M. Valdenegro-Toro, and P. Plöger, “Real-time Convolutional Neural Networks ...
  • Bakariya, A. Singh, H. Singh, P. Raju, R. Rajpoot, and ...
  • Rosenbrock, Deep Learning for Computer Vision with Python Practitioner bundle, ...
  • G. Howard et al., “MobileNets: efficient convolutional neural networks for ...
  • نمایش کامل مراجع