A Multi-View Model for Knowledge Graph Embedding in Link Prediction using GRU-RNN as Constraint Satisfaction Problem

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 130

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-1_012

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

Knowledge graphs are widely used tools in the field of reasoning, where reasoning is facilitated through link prediction within the knowledge graph. However, traditional methods have limitations, such as high complexity or an inability to effectively capture the structural features of the graph. The main challenge lies in simultaneously handling both the structural and similarity features of the graph. In this study, we employ a constraint satisfaction approach, where each proposed link must satisfy both structural and similarity constraints. For this purpose, each constraint is considered from a specific perspective, referred to as a view. Each view computes a probability score using a GRU-RNN, which satisfies its own predefined constraint. In the first constraint, the proposed node must have a probability of over ۰.۵ with frontier nodes. The second constraint computes the Bayesian graph, and the proposed node must have a link in the Bayesian graph. The last constraint requires that a proposed node must fall within an acceptable fault. This allows for N-N relationships to be accurately determined, while also addressing the limitations of embedding. The results of the experiments showed that the proposed method improved performance on two standard datasets.

نویسندگان

Afrooz Moradbeiky

Electrical and Computer Engineering, Semnan University,Semnan, Iran.

Farzin Yaghmaee

Electrical and Computer Engineering, Semnan University,Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Rossi, D. Barbosa, D. Firmani, A. Matinata.: Knowledge graph embedding ...
  • Saxena, A. Tripathi, P. Talukdar.: Improving multi-hop question answering over ...
  • Liu, H. Kou, C. Yan, L. Qi.: Link prediction in ...
  • Labiod, M. Nadif.: Efficient regularized spectral data embedding. Advances in ...
  • Jagvaral, W.K. Lee, J.S. Roh, M.S. Kim, et al.: Path-based ...
  • Q. Zhang, R. Wang, J. Yang, L. Xue.: Knowledge graph ...
  • Chen, S. Jia, Y. Xiang.: A review: Knowledge reasoning over ...
  • Ji, S. Pan, E. Cambria, P. Marttinen, et al.: A ...
  • Wang, Y. Liu, X. Xu, Q.Z. Sheng.: Enhancing knowledge graph ...
  • Molaei, D. Mohamadpur.: Distributed Online Pre-Processing Framework for Big Data ...
  • Lakizadeh, E. Moradizadeh.: Text sentiment classification based on separate embedding ...
  • Popescu, S. Polat-Erdeniz, A. Felfernig, M. Uta, et al: An ...
  • Socher, D. Chen, C.D. Manning, et al.: Reasoning with neural ...
  • Wang, Z. Mao, B. Wang, L. Guo.: Knowledge graph embedding: ...
  • Wang, J. Zhang, J. Feng, Z. Chen, et al.: Knowledge ...
  • Bordes, N. Usunier, A. Garcia-Duran, et al.: Translating embeddings for ...
  • Nickel, L. Rosasco, T. Poggio.: Holographic embeddings of knowledge graphs. ...
  • Trouillon, J. Welbl, S. Riedel.: Complex embeddings for simple link ...
  • Dettmers, P. Minervini, P. Stenetorp.: Convolutional ۲d knowledge graph embeddings. ...
  • Q. Nguyen.: A novel embedding model for knowledge base completion ...
  • Chen, X. Feng, L. Jiang, Q. Zhu.: State of charge ...
  • Chen, T. Ma, C. Xiao.: Fastgcn: fast learning with graph ...
  • Cai, B. Yan, G. Mai, K. Janowicz, R. Zhu.: TransGCN: ...
  • Lin, Z. Liu, M. Sun, Y. Liu, X. Zhu.: Learning ...
  • Arora.: A survey on graph neural networks for knowledge graph ...
  • Chen, X. Feng, L. Jiang, Q. Zhu.: State of charge ...
  • Yu, Y. Yang, R. Zhang, Y Wu.: Knowledge embedding based ...
  • Shang, Y. Tang, J. Huang, J. Bi, X. He.: End-to-end ...
  • Liu, H. Tan, Q. Chen, G. Lin.: Ragat: Relation aware ...
  • You, J.M. Gomes-Selman, R. Ying, et al.: Identity-aware graph neural ...
  • Zhu, Z. Zhang, L.P. Xhonneux,: Neural bellman-ford networks: A general ...
  • Yao, C. Mao, Y. Luo.: KG-BERT: BERT for knowledge graph ...
  • Perez-de-la-Cruz, G. Eslava-Gomez.: Discriminant analysis for discrete variables derived from ...
  • Jafarinejad,: Benefiting from Structured Resources to Present a Computationally Efficient ...
  • L. Tesfaye.: Constrained Dominant sets and Its applications in computer ...
  • Hartog, H.V. Zanten.: Nonparametric Bayesian label prediction on a graph. ...
  • W. Cunningham, J.H. Kwakkel,: Technological frontiers and embeddings: A visualization ...
  • F. Jerding, J.T. Stasko.: The information mural: A technique for ...
  • Li, K. Korb, L. Allison.: The complexity of morality: Checking ...
  • Sherstinsky.: Fundamentals of recurrent neural network (RNN) and long short-term ...
  • Dey, F.M. Salem: Gate-variants of gated recurrent unit (GRU) neural ...
  • Schlichtkrull, T.N. Kipf, P. Bloem, et al: Modeling relational data ...
  • Cai, W.Y. Wang.: Kbgan: Adversarial learning for knowledge graph embeddings. ...
  • نمایش کامل مراجع