PTRP: Title Generation Based On Transformer Models

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-3_001

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

Text summarization has become one of the favorite subjects of researchers due to the rapid growth of contents. In title generation, a key aspect of text summarization, creating a concise and meaningful title is essential as it reflects the article's content, objectives, methodologies, and findings. Thus, generating an effective title requires a thorough understanding of the article. Various methods have been proposed in text summarization to automatically generate titles, utilizing machine learning and deep learning techniques to improve results. This study aims to develop a title generation system for scientific articles using transformer-based methods to create suitable titles from article abstracts. Pre-trained transformer-based models like BERT, T۵, and PEGASUS are optimized for constructing complete sentences, but their ability to generate scientific titles is limited. We have attempted to improve this limitation by presenting a proposed method that combines different models along with a suitable dataset for training. To create our desired dataset, we collected abstracts and titles of articles published on the ScienceDirect.com website. After performing preprocessing on this data, we developed a suitable dataset consisting of ۵۰,۰۰۰ articles. The results from the evaluations of the proposed method indicate more than ۲۰% improvement based on various ROUGE metrics in the generation of scientific titles. Additionally, an examination of the results by experts in each scientific field revealed that the generated titles are also acceptable to these specialists.

کلیدواژه ها:

نویسندگان

Davud Mohammadpur

Computer Department, University of Zanjan, Zanjan, Iran.

Mehdi Nazari

Computer Department, University of Zanjan, Zanjan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • N. Nazari, and M. A. Mahdavi, "A survey on automatic ...
  • D. Radev, E. Hovy, and K. McKeown, “Introduction to the ...
  • M. Zhang, G. Zhou, W. Yu, N. Huang, and W. ...
  • S. Mehrabi, S. A. Mirroshandel, and H. Ahmadifar, “DeepSumm: A ...
  • K. Kaku, M. Kikuchi, T. Ozono, and T. Shintani, “Development ...
  • W. Li, X. Xiao, Y. Lyu, and Y. Wang, “Improving ...
  • M. Molaei, D. Mohamadpur, "Distributed Online Pre-Processing Framework for Big ...
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, ...
  • S. Islam, H. Elmekki, A. Elsebai, J. Bentahar, N. Drawel, ...
  • J. Zhang, Y. Zhao, M. Saleh, and P. Liu, “Pegasus: ...
  • C. Raffel, N. Shazeer, A. Roberts, K. Lee, S. Narang, ...
  • M. Lewis, Y. Liu, N. Goyal, M. Ghazvininejad, A. Mohamed, ...
  • T. Zhang, I. C. Irsan, F. Thung, D. Han, D. ...
  • F. Zhang, J. Liu, Y. Wan, X. Yu, X. Liu, ...
  • F. Zhang, X. Yu, J. Keung, F. Li, Z. Xie, ...
  • T. Zhang, I. C. Irsan, F. Thung, D. Han, D. ...
  • K. Liu, G. Yang, X. Chen, and C. Yu, "Sotitle: ...
  • S. Abdel-Salam, and A. Rafea, “Performance study on extractive text ...
  • J. Pennington, R. Socher, and C. D. Manning, “Glove: Global ...
  • S. Bhargav, A. Choudhury, S. Kaushik, R. Shukla, and V. ...
  • C. Y. Lin, “Rouge: A package for automatic evaluation of ...
  • نمایش کامل مراجع