Transformer-based Generative Chatbot Using Reinforcement Learning

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 29

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-3_003

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

A chatbot is a computer program system designed to simulate human-like conversations and interact with users. It is a form of conversational agent that utilizes Natural Language Processing (NLP) and sequential models to understand user input, interpret their intent, and generate appropriate answer. This approach aims to generate word sequences in the form of coherent phrases. A notable challenge associated with previous models lies in their sequential training process, which can result in less accurate outcomes. To address this limitation, a novel generative chatbot is proposed, integrating the power of Reinforcement Learning (RL) and transformer models. The proposed chatbot aims to overcome the challenges associated with sequential training by combining these two approaches. The proposed approach employs a Double Deep Q-Network (DDQN) architecture with utilizing a transformer model as the agent. This agent takes the human question as an input state and generates the bot answer as an action. To the best of our knowledge, this is the first time that a generative chatbot is proposed using a DDQN architecture with the embedded transformer as an agent. Results on two public datasets, Daily Dialog and Chit-Chat, validate the superiority of the proposed approach over state-of-the-art models involves employing various evaluation metrics.

کلیدواژه ها:

Chatbot ، Generative Chatbot ، Transformer model ، Reinforcement Learning Dialogue-based System ، Conversation System

نویسندگان

Nura Esfandiari

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

Kourosh Kiani

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

Razieh Rastgoo

Electrical and Computer Engineering Department, Semnan University, Semnan, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • G. Caldarini, S. Jaf, and K. McGarry, “A literature survey ...
  • A. D. Tran, J. I. Pallant, and L. W. Johnson, ...
  • C. W. Okonkwo and A. Ade-Ibijola, “Chatbots applications in education: ...
  • R. Rastgoo, K. Kiani, and S. Escalera, “Word separation in ...
  • R. Rastgoo, K. Kiani, and S. Escalera, “Sign language recognition: ...
  • R. Rastgoo, K. Kiani, S. Escalera, V. Athitsos, and M. ...
  • D. Mangla, R. Aggarwal, and M. Maurya, “Measuring perception towards ...
  • M.-H. Tsai, C.-H. Yang, J.-Y. Chen, S.-C. Kang, “Four-stage framework ...
  • R. Ren, J. W. Castro, A. Santos, O. Dieste and ...
  • Oscar; Silvia T ...
  • Sh. Foolad, K. Kiani, and R. Rastgoo, “Recent advances in ...
  • P. I. Prayitno, R. P. Pujo Leksono, F. Chai, R. ...
  • E. Adamopoulou and L. Moussiades, “Chatbots: History, technology, and applications,” ...
  • H. Naveed, A.U Khan, S. Qiu, M. Saqib, S. Anwar, ...
  • O. Caelen, M.-A Blete, “Developing apps with GPT-۴ and ChatGPT,” ...
  • Y. Zhu, J.-Y Nie, K. Zhou, P. Du, H. Jiang, ...
  • R. Lowe, N. Pow, I. Serban, J. Pineau, “The Ubuntu ...
  • Z. Peng and X. Ma, “A survey on construction and ...
  • C. Shu, Z. Zhang, Y. Chen, J. Xiao, J.H. Lau, ...
  • M. Dhyani and R. Kumar, “An intelligent chatbot using deep ...
  • Y. Wang, W. Rong, Y. Ouyang and Z. Xiong, "Augmenting ...
  • Y. Peng, Y. Fang, Z. Xie, G. Zhou, “Topic-enhanced emotional ...
  • M. Yang, W. Tu, Q. Qu, Z. Zhao, X. Chen, ...
  • Z. Lin, P. Xu, G.I. Winata, F.B. Siddique, Z. Liu, ...
  • T.-H. Lin, Y.-H. Huang, and A. Putranto, “Intelligent question and ...
  • A. K. M. Masum, S. Abujar, S. Akter, N. J. ...
  • B. Peng, M. Galley, P. He, C. Brockett, L. Liden, ...
  • T. Shao, Y. Guo, H. Chen and Z. Hao, "Transformer-Based ...
  • S. Shang, J. Liu and Y. Yang, "Multi-Layer Transformer Aggregation ...
  • A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, ...
  • Y. Zhang, S. Sun, M. Galley, Y.-C. Chen, C. Brockett, ...
  • H. Zhou et al H. Zhou, M. Huang, T. Zhang, X. ...
  • S. H. Bao, H. Wang, F. Wu, and H. Wang, ...
  • Y. Gou, Y. Lei, L.o Liu, Y. Dai, C. Shen, ...
  • R. Keerthana, G. Fathima, and L. Florence, “Evaluating the performance ...
  • Q.-D. L. Tran and A.-C. Le, “Exploring bi-directional context for ...
  • Q. Zhu, L. Cui, W.-N. Zhang, F. Wei, T. Liu, ...
  • L. Yu, W. Zhang, J. Wang, Y. Yu, “Seqgan: Sequence ...
  • Y.-L. Tuan and H.-Y. Lee, “Improving conditional sequence generative adversarial ...
  • N. Esfandiari, K. Kiani, and R. Rastgoo, “A conditional generative ...
  • F. Jafarinejad. "Benefiting from Structured Resources to Present a Computationally ...
  • K. Papineni, S. Roukos, T. Ward, and W. J. Zhu, ...
  • C.-Y. Lin, “ROUGE: A package for automatic evaluation of summaries,” ...
  • C. Chen, “BERT۲BERT: Towards reusable pretrained language models,” in Association ...
  • نمایش کامل مراجع