Applying Twin-Hybrid Feature Selection Scheme on Transient Multi-Trajectory Data for Transient Stability Prediction

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 112

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-4_011

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

A speedy and accurate transient stability assessment (TSA) is gained by employing efficient machine learning- and statistics-based (MLST) algorithms on transient nonlinear time series space. In the MLST’s world, the feature selection process by forming compacted optimal transient feature space (COTFS) from raw high dimensional transient data can pave the way for high-performance TSA. Hence, designing a comprehensive feature selection scheme (FSS) that populates COTFS with the relevant-discriminative transient features (RDTFs) is an urgent need. This work aims to introduce twin hybrid FSS (THFSS) to select RDTFs from transient ۲۸-variate time series data. Each fold of THFSS comprises filter-wrapper mechanisms. The conditional relevancy rate (CRR) is based on mutual information (MI) and entropy calculations are considered as the filter method, and incremental wrapper subset selection (IWSS) and IWSS with replacement (IWSSr) formed by kernelized support vector machine (SVM) and twin SVM (TWSVM) are used as wrapper ones. After exerting THFSS on transient univariates, RDTFs are entered into the cross-validation-based train-test procedure for evaluating their efficiency in TSA. The results manifested that THFSS-based RDTFs have a prediction accuracy of ۹۸.۸۷ % and a processing time of ۱۰۲.۶۵۳ milliseconds for TSA.

کلیدواژه ها:

نویسندگان

Seyed Alireza Bashiri Mosavi

Department of Electrical and Computer Engineering, Buein Zahra Technical University, Buein Zahra, Qazvin, Iran.

Omid Khalaf Beigi

Department of Electrical and Computer Engineering, Kharazmi University, Tehran, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Khosravi, M., Banejad, M. and Toosian Shandiz, H., “Robust state ...
  • Han, M. Kamber, and J. Pei, “Data Mining: Concepts and ...
  • Kundur et al., “Definition and classification of power system stability ...
  • M. Pavella, M. Ernest, and D. Ruiz-Vega, “Transient Stability of ...
  • G. James, D. Witten, T. Hastie, and R. Tibshirani, “An ...
  • X. Li, Z. Zheng, L. Wu, R. Li, J. Huang, ...
  • J. Liu, H. Sun, Y. Li, W. Fang, and S. ...
  • A. Stief, J. R. Ottewill, and J. Baranowski, “Relief F-based ...
  • J. Yan, C. Li, and Y. Liu, “Deep learning based ...
  • L. Ji, J. Wu, Y. Zhou, and L. Hao, “Using ...
  • Z. Chen, X. Han, C. Fan, T. Zheng, and S. ...
  • S. A. Bashiri Mosavi, “Extracting most discriminative features on transient ...
  • Y. Li and Z. Yang, “Application of EOS-ELM with binary ...
  • X. Gu, Y. Li, and J. Jia, “Feature selection for ...
  • S. A. Bashiri Mosavi, “Applying cross-permutation-based quad-hybrid feature selection algorithm ...
  • S. A. Bashiri Mosavi, “Finding Optimal Point Features in Transient ...
  • R. Ruiz, J. C. Riquelme, and J. S. Aguilar-Ruiz, “Incremental ...
  • P. Bermejo, J. A. Gámez, J. M. Puerta, “Incremental wrapper-based ...
  • C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn., Vol. ...
  • Javadeva, R. Khemchandani, and S. Chandra, “Twin Support Vector Machines ...
  • H. Shimodaira, K.-I. Noma, M. Nakai, and S. Sagayama, “Support ...
  • C. M. Bishop, “Pattern Recognition and Machine Learning”, ۱st ed. ...
  • D. Tomar and S. Agarwal, “Twin support vector machine,” Egyptian ...
  • C.Canizares, T. Fernandes, E. Geraldi, Jr., L. Gérin-Lajoie, M. Gibbard, ...
  • Siemens Industry, Schenectady, NY, USA. (۲۰۱۳). Siemens Power Technologies International, ...
  • S.A. Bashiri Mosavi, “Extracting discriminative features n reactive power variations ...
  • نمایش کامل مراجع