Exploring Impact of Data Noise on IoT Security: a Study using Decision Tree Classification in Intrusion Detection Systems
محل انتشار: مجله هوش مصنوعی و داده کاوی، دوره: 11، شماره: 4
سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 16
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JADM-11-4_010
تاریخ نمایه سازی: 11 دی 1403
چکیده مقاله:
The Internet of Things (IoT) has emerged as a rapidly growing technology that enables seamless connectivity between a wide variety of devices. However, with this increased connectivity comes an increased risk of cyber-attacks. In recent years, the development of intrusion detection systems (IDS) has become critical for ensuring the security and privacy of IoT networks. This article presents a study that evaluates the accuracy of an intrusion detection system (IDS) for detecting network attacks in the Internet of Things (IoT) network. The proposed IDS uses the Decision Tree Classifier and is tested on four benchmark datasets: NSL-KDD, BOT-IoT, CICIDS۲۰۱۷, and MQTT-IoT. The impact of noise on the training and test datasets on classification accuracy is analyzed. The results indicate that clean data has the highest accuracy, while noisy datasets significantly reduce accuracy. Furthermore, the study finds that when both training and test datasets are noisy, the accuracy of classification decreases further. The findings of this study demonstrate the importance of using clean data for training and testing an IDS in IoT networks to achieve accurate classification. This research provides valuable insights for the development of a robust and accurate IDS for IoT networks.
کلیدواژه ها:
نویسندگان
S. Mojtaba Matinkhah
Department of Computer Engineering, Yazd University, Yazd, Iran.
Roya Morshedi
Department of Computer Engineering, Yazd University, Yazd, Iran.
Akbar Mostafavi
Department of Computer Engineering, Yazd University, Yazd, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :