Exploring Impact of Data Noise on IoT Security: a Study using Decision Tree Classification in Intrusion Detection Systems

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 16

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-4_010

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

The Internet of Things (IoT) has emerged as a rapidly growing technology that enables seamless connectivity between a wide variety of devices. However, with this increased connectivity comes an increased risk of cyber-attacks. In recent years, the development of intrusion detection systems (IDS) has become critical for ensuring the security and privacy of IoT networks. This article presents a study that evaluates the accuracy of an intrusion detection system (IDS) for detecting network attacks in the Internet of Things (IoT) network. The proposed IDS uses the Decision Tree Classifier and is tested on four benchmark datasets: NSL-KDD, BOT-IoT, CICIDS۲۰۱۷, and MQTT-IoT. The impact of noise on the training and test datasets on classification accuracy is analyzed. The results indicate that clean data has the highest accuracy, while noisy datasets significantly reduce accuracy. Furthermore, the study finds that when both training and test datasets are noisy, the accuracy of classification decreases further. The findings of this study demonstrate the importance of using clean data for training and testing an IDS in IoT networks to achieve accurate classification. This research provides valuable insights for the development of a robust and accurate IDS for IoT networks.

نویسندگان

S. Mojtaba Matinkhah

Department of Computer Engineering, Yazd University, Yazd, Iran.

Roya Morshedi

Department of Computer Engineering, Yazd University, Yazd, Iran.

Akbar Mostafavi

Department of Computer Engineering, Yazd University, Yazd, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • E. Gyamfi and A. D. Jurcut, “Novel online network intrusion ...
  • X. Deng, J. Zhu, X. Pei, L. Zhang, Z. Ling, ...
  • Y. Wu, L. Nie, S. Wang, Z. Ning, and S. ...
  • J. Wu et al., “Joint semantic transfer network for IoT ...
  • P. Ruzafa-Alcázar et al., “Intrusion detection based on privacy-preserving federated ...
  • J. Long, W. Liang, K.-C. Li, Y. Wei, and M. ...
  • A. Oseni et al., “An explainable deep learning framework for ...
  • Sk. T. Mehedi, A. Anwar, Z. Rahman, K. Ahmed, and ...
  • S. Bebortta, S. K. Das, and S. Chakravarty, “Fog-enabled intelligent ...
  • M. M. Alani and A. I. Awad, “An intelligent two-layer ...
  • J. Wu, H. Dai, Y. Wang, K. Ye, and C. ...
  • A. Thakkar and R. Lohiya, “Attack classification of imbalanced intrusion ...
  • A. A. M. Sharadqh, H. Hatamleh, A. M. A. Alnaser, ...
  • Z. Ma, L. Liu, W. Meng, X. Luo, L. Wang, ...
  • I. A. Kandhro et al., “Detection of real-time malicious intrusions ...
  • A. Telikani, J. Shen, J. Yang, and P. Wang, “Industrial ...
  • O. Abdel Wahab, “Intrusion detection in the IoT under data ...
  • W. Liang, Y. Hu, X. Zhou, Y. Pan, and K. ...
  • X. Zhou, W. Liang, W. Li, K. Yan, S. Shimizu, ...
  • T. M. Booij, I. Chiscop, E. Meeuwissen, N. Moustafa, and ...
  • M. Zeeshan et al., “Protocol-based deep intrusion detection for DoS ...
  • H. Siddharthan, T. Deepa, and P. Chandhar, “SENMQTT-SET: An intelligent ...
  • M. S. A. Muthanna, R. Alkanhel, A. Muthanna, A. Rafiq, ...
  • C. Miranda, G. Kaddoum, A. Boukhtouta, T. Madi, and H. ...
  • P. L. S. Jayalaxmi, R. Saha, G. Kumar, M. Conti, ...
  • Y. Yang, K. Zheng, C. Wu, and Y. Yang, Improving ...
  • M. Yadollahzadeh Tabari; Z. Mataji, Detecting Sinkhole Attack in RPL-based ...
  • L. khalvati; M. Keshtgary; N. Rikhtegar, Intrusion Detection based on ...
  • نمایش کامل مراجع