A Multi-layered Hidden Markov Model for Real-Time Fraud Detection in Electronic Financial Transactions

سال انتشار: 1402
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 108

فایل این مقاله در 11 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-11-4_009

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

Hidden Markov Models (HMMs) are machine learning models that has been applied to a range of real-life applications including intrusion detection, pattern recognition, thermodynamics, statistical mechanics among others. A multi-layered HMMs for real-time fraud detection and prevention whilst reducing drastically the number of false positives and negatives is proposed and implemented in this study. The study also focused on reducing the parameter optimization and detection times of the proposed models using a hybrid algorithm comprising the Baum-Welch, Genetic and Particle-Swarm Optimization algorithms. Simulation results revealed that, in terms of Precision, Recall and F۱-scores, our proposed model performed better when compared to other approaches proposed in literature.

نویسندگان

Abdul Aziz Danaa Abukari

Department of Computer Science, Tamale Technical University, Tamale, Ghana.

Mohammed Ibrahim

Department of Computer Science, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana.

Alhassan Abdul-Barik

Department of Computer Science, University for Development Studies, Tamale, Ghana.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • L.R.Rabiner, "A tutorial on hidden Markov models and selected applications ...
  • L. Duan, L. Xu, F. Guo, J. Lee, and B. ...
  • A. Abdallah, A.M. Mohd, and Z. Anazida, "Fraud detection system: ...
  • A. Srivastava, K. Amlan, S. Shamik and Arun Majumdar, "Credit ...
  • R. Ahmadian Ramaki, A. Rasoolzadegan, and A. Javan Jafari, "A ...
  • B. Mor, S. Garhwal, and A. Kumar. "A systematic review ...
  • W. K. Zegeye, R.A. Dean and F. Moazzami, F, “Multi-layer ...
  • X. D Hoang, J. Hu and P. Bertok, “A multi-layer ...
  • M. Penagarikano, and B. German "Layered Markov models: A New ...
  • O. Abouabdalla, H. El-Taj, A. Manasrah and S. Ramadass, “False ...
  • G.P. Spathoulas and S.K. Katsikas, “Reducing false positives in intrusion ...
  • A. Prakash and C. Chandrasekar, "A novel hidden Markov model ...
  • D.A. Burgio, “Reduction of False Positives in Intrusion Detection Based ...
  • F.K. Alarfaj, I. Malik, H.U. Khan, N. Almusallam, M. Ramzan ...
  • V. Baghdasaryan, H. Davtyan, A. Sarikyan and Z. Navasardyan,” Improving ...
  • M. Valavan, and S. Rita. "Predictive-Analysis-based Machine Learning Model for ...
  • N.Q. Do, A. Selamat, O. Krejcar, E. Herrera-Viedma and H. ...
  • H. Fujita, "Effectiveness of a hybrid deep learning model integrated ...
  • E. Lopez-Rojas, A. Elmir and S. Axelsson, “PaySim: A financial ...
  • A. dedoyin, “Predicting fraud in mobile money transfer (Doctoral dissertation, University of ...
  • A.AA. Danaa, M.I. Daabo and A. Abdul-Barik, “An Improved Hybrid ...
  • R. Wedge, J.M. Kanter, K. Veeramachaneni, S.M. Rubio and S.I ...
  • نمایش کامل مراجع