You Look at the Face of an Angel: An Innovative Hybrid Deep Learning Approach for Detecting Down Syndrome in Children's Faces Through Facial Analysis

سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 119

فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_JADM-12-2_010

تاریخ نمایه سازی: 11 دی 1403

چکیده مقاله:

Traditional Down syndrome identification often relies on professionals visually recognizing facial features, a method that can be subjective and inconsistent. This study introduces a hybrid deep learning (DL) model for automatically identifying Down syndrome in children's facial images, utilizing facial analysis techniques to enhance diagnostic accuracy and enable real-time detection. The model employs the MobileNetV۲ architecture to address dataset bias and diversity issues while ensuring efficient feature extraction. The framework also integrates the structure with optimized Bidirectional Long Short-Term Memory (BiLSTM) to enhance feature classification. Trained and validated on facial images from children with Down syndrome and healthy controls from the Kaggle dataset, the model achieved ۹۷.۶۰% accuracy and ۹۷.۵۰% recall. The approach also integrates cloud and edge processing for efficient real-time analysis, offering adaptability to new images and conditions.

نویسندگان

Khosro Rezaee

Department of Biomedical Engineering, Meybod University, Meybod, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • M. E. Weijerman and J. P. de Winter, "The care ...
  • P. Kruszka, A. R. Porras, A. K. Sobering, F. A. ...
  • N. J. Roizen and D. Patterson, "Down’s syndrome," Lancet, vol. ...
  • Q. Zhao, K. Rosenbaum, R. Sze, D. Zand, M. Summar, ...
  • B. Qin, et al., "Automatic identification of down syndrome using ...
  • V. Dima, A. Ignat, and C. Rusu, "Identifying down syndrome ...
  • E. H. Pooch, T. A. Alva, and C. D. Becker, ...
  • B. Jin, L. Cruz, and N. Gonçalves, "Deep facial diagnosis: ...
  • D. Shen, G. Wu, and H. I. Suk, "Deep learning ...
  • R. Zaitoon and H. Syed, "RU-Net۲+: A deep learning algorithm ...
  • Q. Hennocq, et al., "An automatic facial landmarking for children ...
  • N. Paredes, E. Caicedo-Bravo, and B. Bacca, "Emotion recognition in ...
  • H. Liu, et al., "Automatic facial recognition of Williams-Beuren syndrome ...
  • X. Kong, Y. Yao, C. Wang, Y. Wang, J. Teng, ...
  • Z. Pan, et al., "Clinical application of an automatic facial ...
  • M. Tavakolian and A. Hadid, "A spatiotemporal convolutional neural network ...
  • A. Mittal, H. Gaur, and M. Mishra, "Detection of down ...
  • S. S. Mahdi, et al., "Multi-scale part-based syndrome classification of ...
  • A. R. Porras, et al., "Development and evaluation of a ...
  • E. Setyati, S. Az, S. P. Hudiono, and F. Kurniawan, ...
  • H. Yang, et al., "Automated facial recognition for Noonan syndrome ...
  • Y. Gurovich, et al., "Identifying facial phenotypes of genetic disorders ...
  • J. T. Pantel, et al., "Efficiency of computer-aided facial phenotyping ...
  • T. C. Hsieh and P. M. Krawitz, "Computational facial analysis ...
  • Kaggle Dataset. Available: https://www.kaggle.com/datasets/mervecayli/detection-of-down-syndrome-in-children ...
  • Y. S. Ting, Y. F. Teng, and T. D. Chiueh, ...
  • P. Thanapol, K. Lavangnananda, P. Bouvry, F. Pinel, and F. ...
  • N. Jacobsen, et al., "Analysis of intensity normalization for optimal ...
  • G. Howard, et al, "Mobilenets: Efficient convolutional neural networks for ...
  • M. R. Fallahzadeh, F. Farokhi, A. Harimi, and R. Sabbaghi-Nadooshan, ...
  • نمایش کامل مراجع