Advancing Sorting Efficiency and Exploring Complex Applications in Algorithmic Design

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 98

فایل این مقاله در 12 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

CARSE08_036

تاریخ نمایه سازی: 10 دی 1403

چکیده مقاله:

Sorting algorithms are central to computational theory and widely used in data-centricapplications across fields such as machine learning, data analysis, and computationalgeometry. This paper presents an in-depth analysis of sorting efficiency, focusing on classicalalgorithms (QuickSort, MergeSort, HeapSort) and their optimization through parallelization,hybrid memory, and advanced data structures. We review seminal works by Aho, Hopcroft,and Ullman (۱۹۸۳) and Knuth (۱۹۷۳), establishing a foundation for performance evaluationand optimization strategies. Recent advancements, including in-memory parallel sortingarchitectures like IMC-Sort (Li et al., ۲۰۲۰), are explored to enhance computational efficiency.Further, this study investigates complex applications of sorting algorithms, such as their usein unstructured video classification (Morris & Kender, ۲۰۰۹) and eco-efficiency modeling fortropical systems (Peters et al., ۲۰۱۳). A novel sorting approach based on identifying thelongest increasing subsequences is presented, building on our previous work (Akbarian &Keyhanipour, ۲۰۲۳) to achieve optimized sequence sorting. By integrating classicaltechniques with modern innovations, this paper contributes to the ongoing evolution ofsorting algorithms, highlighting their relevance in diverse domains and their potential to meetthe demands of future computational challenges.

نویسندگان

Alireza Akbarian

Computer Engineering Student of Sharif University of Technology, International Campus-Kish, Iran

Arian Akbarian

High School Mathematics Student, Kerman, Iran