A Group Recommender System Based on Machine Learning for Hypertensive Patients
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 79
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_IJTMGH-12-4_005
تاریخ نمایه سازی: 9 دی 1403
چکیده مقاله:
Hypertension, a severe chronic disease and a primary risk factor for cardiovascular issues, poses significant challenges in treatment and decision-making for physicians. Recommender systems present a promising avenue for enhancing hypertension care decision-making processes. However, traditional approaches such as collaborative filtering encounter challenges like data sparsity and scalability. To address these challenges, machine learning based recommender systems have been explored. This study presents an enhanced collaborative filtering method, integrating clustering and group recommendation techniques. The proposed research aggregates group recommendations for each cluster using static and dynamic methods. For new patients, three similarity measures are employed to select relevant recommendations from the most similar case cluster. The findings demonstrate the model's satisfactory performance, particularly when employing dynamic group recommendation and Euclidean similarity, showcasing improved accuracy in terms of Mean Absolute Error (MAE).
کلیدواژه ها:
نویسندگان
Mehrdad Kargari
Faculty of Industrial Engineering and Systems, Tarbiat Modares University, Tehran, Iran
Arefeh Valiollahi
Information Technology dept., Tarbiat Modares University, Tehran, Iran