An Enhanced Convolutional Neural Network for NoiseResilient Image Classification

سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 118

فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

ITCT24_072

تاریخ نمایه سازی: 4 دی 1403

چکیده مقاله:

While CNNs excel in image classification, their performance deteriorates under noisy conditions. Thispaper introduces an enhanced CNN (ECN) designed to enhance noise resilience while maintaining highaccuracy in image classification tasks. By replacing the ReLU activation function with K-winners andutilizing sparse weight initialization, the ECNK achieves superior performance even in the presence of upto ۴۰% noise. The hybrid ECNK algorithm is also proposed, combining the strengths of CNN with k-nearestneighbors (KNN) to further increase classification accuracy. The model was tested on both the MNISTdataset and the ABIDE dataset for detecting Autism Spectrum Disorder (ASD) from brain MRI scans.Results demonstrate that the ECNK method achieves a classification accuracy of ۹۹.۸% for ASD detection,even under noisy conditions, significantly outperforming traditional CNN methods.

کلیدواژه ها:

Enhanced Convolutional Neural Network-KNN (ECN) ، Noise-Resilient Image Classification ، Autism Spectrum Disorder Detection ، MRI Image Segmentation ، Deep Learning for Medical Imaging ، Kwinners Activation Function ، Multi-Layer Neural Networks

نویسندگان

Mostafa Radmehr

Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen ۵۱۸۰۶۰, China

Sara Yousefi Javan

Computer Engineering, Islamic Azad University of Mashhad, Mashhad, Iran