An Enhanced Convolutional Neural Network for NoiseResilient Image Classification
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 118
فایل این مقاله در 7 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCT24_072
تاریخ نمایه سازی: 4 دی 1403
چکیده مقاله:
While CNNs excel in image classification, their performance deteriorates under noisy conditions. Thispaper introduces an enhanced CNN (ECN) designed to enhance noise resilience while maintaining highaccuracy in image classification tasks. By replacing the ReLU activation function with K-winners andutilizing sparse weight initialization, the ECNK achieves superior performance even in the presence of upto ۴۰% noise. The hybrid ECNK algorithm is also proposed, combining the strengths of CNN with k-nearestneighbors (KNN) to further increase classification accuracy. The model was tested on both the MNISTdataset and the ABIDE dataset for detecting Autism Spectrum Disorder (ASD) from brain MRI scans.Results demonstrate that the ECNK method achieves a classification accuracy of ۹۹.۸% for ASD detection,even under noisy conditions, significantly outperforming traditional CNN methods.
کلیدواژه ها:
Enhanced Convolutional Neural Network-KNN (ECN) ، Noise-Resilient Image Classification ، Autism Spectrum Disorder Detection ، MRI Image Segmentation ، Deep Learning for Medical Imaging ، Kwinners Activation Function ، Multi-Layer Neural Networks
نویسندگان
Mostafa Radmehr
Guangdong Provincial Key Laboratory of Durability for Marine Civil Engineering, Shenzhen University, Shenzhen ۵۱۸۰۶۰, China
Sara Yousefi Javan
Computer Engineering, Islamic Azad University of Mashhad, Mashhad, Iran