ACCELERATION OF NEAR FIELD COMPUTATION IN MLFMA ON A SINGLE GPU BY GENERATING REDUNDANCY IN DATA
سال انتشار: 1403
نوع سند: مقاله کنفرانسی
زبان: انگلیسی
مشاهده: 74
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
ITCT24_040
تاریخ نمایه سازی: 4 دی 1403
چکیده مقاله:
Improving efficiency of multi-level fast multi-pole algorithm (MLFMA) on distributed and parallel systemshas been vastly studied, specially for GPUs. Unlike the far-field computation, acceleration of near-fieldcomputation in MLFMA algorithm on GPUs was of less concern in the literature, however there are somesolutions that exploited special specifications of GPU’s memory. This article proposes data replication forP۲P operator and uses analytical performance models to determine its optimality criteria. By modellingthe speedup, we found that making threads independence by creating redundancy in the data makes thealgorithm for lower dense problems nearly ۱۳ times faster than non-redundant mode.
کلیدواژه ها:
نویسندگان
Morteza Sadeghi
Department of Engineering Science, University of Tehran, Tehran, IRAN
Abdolreza Torabi
Department of Engineering Science, University of Tehran, Tehran, IRAN