A Hybrid Artificial Neural Network and Particle Swarm Optimization Algorithm for Statistical Downscaling of Precipitation in Arid Region
محل انتشار: فصلنامه اکوپرشیا، دوره: 5، شماره: 4
سال انتشار: 1396
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 105
فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ECOPER-5-4_007
تاریخ نمایه سازی: 2 دی 1403
چکیده مقاله:
Background: Prediction of future climate change is based on output of global climate models (GCMs). However, because of coarse spatial resolution of GCMs (tens to hundreds of kilometers), there is a need to convert GCM outputs into local meteorological and hydrological variables using a downscaling approach. Downscaling technique is a method of converting the coarse spatial resolution of GCM outputs at the regional or local scale. This study proposed a novel hybrid downscaling method based on artificial neural network (ANN) and particle swarm optimization (PSO) algorithm.
Materials and Methods: Downscaling technique is implemented to assess the effect of climate change on a basin. The current study aims to explore a hybrid model to downscale monthly precipitation in the Minab basin, Iran. The model was proposed to downscale large scale climatic variables, based on a feed-forward ANN optimized by PSO. This optimization algorithm was employed to decide the initial weights of the neural network. The National Center for Environmental Prediction and National Centre for Atmospheric Research reanalysis datasets were utilized to select the potential predictors. The performance of the artificial neural network-particle swarm optimization model was compared with artificial neural network model which is trained by Levenberg–Marquardt (LM) algorithm. The reliability of the models were evaluated by using root mean square error and coefficient of determination (R۲).
Results: The results showed the robustness and reliability of the ANN-PSO model for predicting the precipitation which it performed better than the ANN-LM. It was concluded that ANN-PSO is a better technique for statistically downscaling GCM outputs to monthly precipitation than ANN-LM.
Discussion and Conclusions: This method can be employed effectively to downscale large-scale climatic variables to monthly precipitation at station scale.
کلیدواژه ها:
Artificial neural network (ANN) ، Climate change ، Multi-layer perceptron ، Particle Swarm Optimization (PSO) ، Statistical downscaling
نویسندگان
Meysam Alizamir
Ph.D. Student, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Mehdi Azhdary Moghadam
Associate Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Arman Hashemi Monfared
Assistant Professor, Department of Civil Engineering, University of Sistan and Baluchestan, Zahedan, Iran
Aliakbar Shamsipour
Associate Professor, Faculty of Geography, University of Tehran, Tehran, Iran
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :