Performance of Classification Methods to Evaluate Groundwater (Case Study: Shoosh Aquifer)

سال انتشار: 1393
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 91

فایل این مقاله در 16 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ECOPER-2-2_007

تاریخ نمایه سازی: 2 دی 1403

چکیده مقاله:

The objective of this study was to classify the Shoosh Aquifer to several zones with different water quality in Khuzestan Province, Iran. In this regard, the performance of classification methods (Discriminant function and Cluster analysis) for the classification of groundwater based on the level of pollution with an emphasis on the problem of over-fitting in training data were considered. An over-fitted model will generally have poor predictiveperformance, as it can exaggerate minor fluctuations in the data. Cluster Analysis(CA) was adopted to spatially explain the similarity of sampling stations with respect to measured parameters. Three methods for variable selection were used including regularized discriminant analysis, principal component analysis and Wilks's lambda method. The best algorithm for variable selection was Wilks'lambda which resulted in reducing the generalization error of the test sample to ۰.۱ for leave-one-out and ۴-fold cross-validation. The second best performed algorithm was regularized discriminant function with ۰.۱۶۷ and ۰.۱۳۳ misclassification error for the two above-mentioned methods, respectively. Principal component analysis did not proved to be a promising algorithm for variable selection in the classification methods.

نویسندگان

Mohamad Sakizadeh

Assistant professor, Faculty of Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Alberto, W.D., Pilar, D.M.D., Valeria, A.M., Fabiana, P.S., Cecilia, H.A. ...
  • Babaei, A.A., Mahvi, A.H., Nouri, J., Ahmadpour, E. and Mohsenzadeh, ...
  • Baum, E.B. and Haussler, D. What size net gives valid ...
  • Belhumeur, P.N., Hespanha, J.P. and Kriegman, D.J. Eigenfacesvs. Fisherfaces: recognition ...
  • Burden, F.R., Donnert, D., Godish, T. and Mckelvie, I. Environmental ...
  • Carroll, S.P., Dawes, L., Hargreaves, M. and Goonetilleke, A. Faecal ...
  • Feio, M., Almeida, S.F.P., Craveiro, S.C. and Calado, A.J. A ...
  • Fried, J.J. Groundwater Pollution. Developments in Water Science Series, ۴ ...
  • Friedman, J.H. Regularized discriminant analysis. Jam. Statist. Assoc.,۱۹۸۹; ۸۴: ۱۶۵-۱۷۵ ...
  • Jennrich R.J. Stepwise discriminant analysis. In: Statistical Methods for Digital ...
  • Johnson, R.A. and Wichern, D.W. Applied multivariate statistical analysis, sixth ...
  • Jolliffe, I.T. Discarding variables in principal component analysis. I: Artificial ...
  • Jolliffe, I.T. Discarding variables in principal component analysis. II: Real ...
  • Mardia KV, Kent, J.T. and Bibby, J.M. Multivariate Analysis. London, ...
  • Ouardighi, A.E., Akadi, A.E. and Aboutajdine, D. Feature Selection on ...
  • Qiao, Z., Zhou, L. and Huang, J. Z. Effective linear ...
  • Qiao, Z., Zhou, L. and Huang, J.Z. Sparse linear discriminant ...
  • Raudys, S.J. and Jain, A.K. Small sample size effects in ...
  • Reisenhofer, E., Adami, G. and Favretto, E. Heavy metals andnutrients ...
  • Sun, D.W. Infrared spectroscopy for food quality analysis and control, ...
  • Tian, T.S., Wilcox, R.R. and James, G.M. Data reduction in ...
  • Trauth, M.H. Matlab recipes for earth sciences, Springer, ۲۰۰۶; USA ...
  • Wu, E.M.Y. and Kuo, S.L. Applying a multivariate statistical analysis ...
  • Zhuang, X.S. and Dai, D.Q. Improved discriminate analysis for high-dimensional ...
  • Zhou, F., Guo, H., Liu, Y. and Jiang, Y. Chemometrics ...
  • Alberto, W.D., Pilar, D.M.D., Valeria, A.M., Fabiana, P.S., Cecilia, H.A. ...
  • Babaei, A.A., Mahvi, A.H., Nouri, J., Ahmadpour, E. and Mohsenzadeh, ...
  • Baum, E.B. and Haussler, D. What size net gives valid ...
  • Belhumeur, P.N., Hespanha, J.P. and Kriegman, D.J. Eigenfacesvs. Fisherfaces: recognition ...
  • Burden, F.R., Donnert, D., Godish, T. and Mckelvie, I. Environmental ...
  • Carroll, S.P., Dawes, L., Hargreaves, M. and Goonetilleke, A. Faecal ...
  • Feio, M., Almeida, S.F.P., Craveiro, S.C. and Calado, A.J. A ...
  • Fried, J.J. Groundwater Pollution. Developments in Water Science Series, ۴ ...
  • Friedman, J.H. Regularized discriminant analysis. Jam. Statist. Assoc.,۱۹۸۹; ۸۴: ۱۶۵-۱۷۵ ...
  • Jennrich R.J. Stepwise discriminant analysis. In: Statistical Methods for Digital ...
  • Johnson, R.A. and Wichern, D.W. Applied multivariate statistical analysis, sixth ...
  • Jolliffe, I.T. Discarding variables in principal component analysis. I: Artificial ...
  • Jolliffe, I.T. Discarding variables in principal component analysis. II: Real ...
  • Mardia KV, Kent, J.T. and Bibby, J.M. Multivariate Analysis. London, ...
  • Ouardighi, A.E., Akadi, A.E. and Aboutajdine, D. Feature Selection on ...
  • Qiao, Z., Zhou, L. and Huang, J. Z. Effective linear ...
  • Qiao, Z., Zhou, L. and Huang, J.Z. Sparse linear discriminant ...
  • Raudys, S.J. and Jain, A.K. Small sample size effects in ...
  • Reisenhofer, E., Adami, G. and Favretto, E. Heavy metals andnutrients ...
  • Sun, D.W. Infrared spectroscopy for food quality analysis and control, ...
  • Tian, T.S., Wilcox, R.R. and James, G.M. Data reduction in ...
  • Trauth, M.H. Matlab recipes for earth sciences, Springer, ۲۰۰۶; USA ...
  • Wu, E.M.Y. and Kuo, S.L. Applying a multivariate statistical analysis ...
  • Zhuang, X.S. and Dai, D.Q. Improved discriminate analysis for high-dimensional ...
  • Zhou, F., Guo, H., Liu, Y. and Jiang, Y. Chemometrics ...
  • نمایش کامل مراجع