Convolutional Neural Networks (CNN)-Signal Processing Combination for Daily Runoff Forecasting

سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 71

فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد

استخراج به نرم افزارهای پژوهشی:

لینک ثابت به این مقاله:

شناسه ملی سند علمی:

JR_ECOPER-10-3_006

تاریخ نمایه سازی: 2 دی 1403

چکیده مقاله:

Aim: The main aim of this study was to assess the efficacy of two important signal processing approaches i.e., wavelet transform and ensemble empirical mode decomposition (EEMD) on the performance of convolutional neural network (CNN). Materials & Methods: The study was performed in two watersheds i.e., Kasilian and Bar-Erieh watersheds. In the first step, the CNN based runoff modeling was done in its single form i.e., using the original data as input. In the next step the input data was decomposed into several different sub-components i.e., approximation and details using Wavelet transform and Intrinsic Mode Functions (IMFs) using EEMD. Then the decomposed data were imported to the CNN model as input and combined Wavelet-CNN and EEMD-CNN models were provided. Findings: The results showed that CNN in its single form could not estimate the one day ahead runoff with an acceptable accuracy. CNN in its original form had a moderate performance (with NRMSE of ۸۳ and ۶۶%). However, application of Wavelet transform and EEMD in combination with CNN produced acceptable results. It was shown that Wavelet transform had a higher impact (with NRMSE of ۴۸ and ۲۶%) on the performance of CNN in comparison to EEMD (with NRMSE of ۵۲ and ۶۱%). Conclusion: This study showed that signal processing approaches can enhance the ability of deep learning methods such as CNN in predicting runoff values for one day ahead. However, the impact of signal processing methods on the performance of deep learning methods are not equal.

نویسندگان

Forough Ahmadinezhad Baghban

Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Iran.

Vahid Moosavi

Department of Watershed Management Engineering, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Iran.

مراجع و منابع این مقاله:

لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :
  • Blöschl G., Hall J., Viglione A., Perdigão R.A.P., Parajka J., ...
  • Chen X., Huang J., Han Z., Gao H., Liu M., ...
  • Di Baldassarre G., Montanari A., Lins H., Koutsoyiannis D., Brandimarte ...
  • Yuan X., Wang L., Wu P., Ji P., Sheffield J., ...
  • Zhang Q., Xiao M., Singh V.P., Li J. Regionalization and ...
  • Beven K.J. Rainfall-runoff modelling: the primer. John Wiley & Sons. ...
  • Liu Z., Wang Y., Xu Z., Duan Q. Conceptual Hydrological ...
  • Vafakhah M., Janizadeh S., Khosrobeigi Bozchaloei S. Application of several ...
  • Xie T., Zhang G., Hou J., Xie J., Lv M., ...
  • Zuo G., Luo J., Wang N., Lian Y., He X. ...
  • Seibert J., Vis M.J.P., Kohn I., Weiler M., Stahl K. ...
  • Mao G., Wang M., Liu J., Wang Z., Wang K., ...
  • Zhang J., Chen X., Khan A., Zhang Y.k., Kuang X., ...
  • Cannas B., Fanni A., Sias G., Tronei S., Zedda M.K. ...
  • Chen C., Hui Q., Xie W., Wan S., Zhou Y., ...
  • Moosavi V., Malekinezhad H., Shirmohammadi B. Fractional snow cover mapping ...
  • Moosavi V., Vafakhah M., Shirmohammadi B., Behnia N. A Wavelet-ANFIS ...
  • Quilty J., Adamowski J. Addressing the incorrect usage of wavelet-based ...
  • Shoaib M., Shamseldin A.Y., Melville B.W. Comparative study of different ...
  • Wang W.C., Chau K.W., Qiu L., Chen Y.B. Improving forecasting ...
  • Shoaib M., Shamseldin A.Y., Melville B.W., Khan M.M. A comparison ...
  • Tan Q.F., Lei X.H., Wang X., Wang H., Wen X., ...
  • Zia Abadi L., Ahmadi H. Comparison of EPM and geomorphology ...
  • Guan J., Lai R., Xiong A., Liu Z., Gu L. ...
  • Liu Y., Hou G., Huang F., Qin H., Wang B., ...
  • Wan S., Goudos S. Faster R-CNN for multi-class fruit detection ...
  • LeCun Y., Bottou L., Bengio Y., Haffner P. Gradient-based learning ...
  • Nourani V., Behfar N. Multi-station runoff-sediment modeling using seasonal LSTM ...
  • نمایش کامل مراجع