Improving Rainfall Maps using Precipitation Products of IMERG V۰۶ Final Satellite and Interpolation Methods
محل انتشار: فصلنامه اکوپرشیا، دوره: 11، شماره: 1
سال انتشار: 1401
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 58
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ECOPER-11-1_005
تاریخ نمایه سازی: 2 دی 1403
چکیده مقاله:
Aims: The availability of precipitation data plays an important role in many meteorological, hydrological and applications.
Materials & Methods: In this study, to improve precipitation maps and increase the accuracy of precipitation maps, linear regression, multivariate, and Kriging subsets were used. The data from ۱۴ meteorological stations and IMERG images in the period of ۲۰ years (۲۰۰۱ to ۲۰۲۰), digital elevation model, Latitude and Longitude maps were used. At first, based on regression in Minitab software, the relationship between air and ground parameters was taken. Finally, with the interpolation methods and based on the error coefficients, the best equations for predicting precipitation were determined and the spatial distribution of precipitation was obtained.
Findings: According to the results, six out of ۱۳ models were selected because of low RMSE and high R۲, R, and NS. In regression models where only one climatic or edaphic parameter was used, forecast accuracy was reduced. But in the models that were used in the regression elevation, Longitude, Latitude and IMERG parameters in combination with interpolation methods, the extracted data matched the real data with a slight difference. In this study, instead of the average of the input parameters, the maps of each parameter were used, increasing the accuracy of the forecast model to R۲=۰.۸.
Conclusion: results showed that combining satellite precipitation products with interpolation methods led to a more accurate estimate of precipitation in the points without recording data will be precipitated and the multivariate regression method will be more accurate than the linear gradient.
کلیدواژه ها:
نویسندگان
Morteza Gheysouri
Ph.D. student, Watershed Management, Faculty of Natural Resources, University of Tehran, Iran.
Shahram Khalighi Sigaroodi
Associate Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, University of Tehran, Iran.
Ali salajeghe
Professor, Department of Watershed Management Engineering, Faculty of Natural Resources, University of Tehran, Iran.
Bahram Choubin
Soil Conservation and Watershed Management Research Department, West Azarbaijan Agricultural and Natural Resources Research and Education Center, AREEO, Urmia, Iran.
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :