Evaluation of Multi-Sensor Satellite Data Accuracy for LU/LC Classification: Insights from Cartosat-۱ and Liss-Iv Imagery In ۲۰۲۱
محل انتشار: فصلنامه اکوپرشیا، دوره: 12، شماره: 2
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 154
فایل این مقاله در 13 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_ECOPER-12-2_002
تاریخ نمایه سازی: 2 دی 1403
چکیده مقاله:
Aim: Due to increasing flaws in digital satellite images, the classification of land use and land cover (LU/LC) must be done accurately. It is important to assess the accuracy of Cartosat-۱ and LISS-IV data, concentrating on how well-suited these data sets were for mapping and tracking land use and cover. The purpose of the study was to evaluate how well these datasets distinguished between various land cover categories.
Method: Supervised classification is crucial for accurate mapping and monitoring land cover and land use dynamics. It uses known samples to train classification algorithms, enabling detailed analysis and decision-making, and distinguishing subtle spectral variations. A total of ۲۰۰ points were randomly selected in the study area using stratified random selection methodology for accuracy assessment which was verified using Google earth.
Findings: The results of study show that the overall accuracy for LU/LC classification of Cartosat-۱ and LISS-IV for the year ۲۰۲۱ was obtained as ۹۲% and ۸۸.۵۰% respectively with corresponding kappa coefficient values as ۰.۹۰ and ۰.۸۶ respectively which proves that data from Cartosat-۱ is more accurate as compared to LISS-IV for LU/LC classification. It was also found that LU/LC classes belongs to both classified data of Cartosat-۱ and LISS-IV data showed variability in their areas. Due to the high spatial resolution of Cartosat-۱ data LULC classes edge to edge classification results have been obtained. Different feature have been purely identified and classified.
Conclusion: Cartosat-۱ dataset is better than LISS-IV dataset for deailed LU/LC classification due to its high spatial resolution.
کلیدواژه ها:
نویسندگان
Amritpal Digra
Research Scientist, Department of Space, National Remote Sensing Centre, Indian Space Research Organisation, Regional Remote Sensing Centre, North, New Delhi-۱۱۰۰۴۹.
Arun Kaushal
Professor, Dept of Soil and Water Engineering, Punjab Agricultural University, Ludhiana, Punjab, India
Dikesh Chandra Loshali
Scientist SG, Punjab Remote Sensing Centre, Ludhiana, Punjab, India
مراجع و منابع این مقاله:
لیست زیر مراجع و منابع استفاده شده در این مقاله را نمایش می دهد. این مراجع به صورت کاملا ماشینی و بر اساس هوش مصنوعی استخراج شده اند و لذا ممکن است دارای اشکالاتی باشند که به مرور زمان دقت استخراج این محتوا افزایش می یابد. مراجعی که مقالات مربوط به آنها در سیویلیکا نمایه شده و پیدا شده اند، به خود مقاله لینک شده اند :