تولید توضیح شخصی سازی شده برای سیستم پیشنهاددهنده لیست توئیتر مبتنی بر شباهت معنایی هشتگ ها
فایل این مقاله در 10 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
تاریخ نمایه سازی: 30 آذر 1403
چکیده مقاله:
امروزه سیستم های پشنهاددهنده ی لیست های توئیتر با بکارگیری اطلاعات مختلف کاربران و لیست ها و همچنین اعمال الگوریتم های پیچیده، توانسته اند به دقت بالایی در پیش بینی برسند و پیشنهادهای مرتبط با هر کاربر را تولید کنند، اما قابلیت توضیح پذیری در این سیستم ها به عنوان یک چالش مطرح می باشد. توضیح مناسب به همراه یک لیست پیشنهادشده علاوه بر افزایش اعتماد و رضایت کاربران، می تواند به آن ها در تصمیم گیری آگاهانه کمک نماید. از این رو در این مقاله، یک مدل تولید توضیح ارائه می شود که به ایجاد خودکار یک توصیف برای لیست پیشنهادشده بصورت شخصی سازی شده برای کاربر مدنظر می پردازد. بطور دقیق تر، این مدل با انتخاب هشتگ های پرتکرار از محتوای لیست که ارتباط معنایی با تاریخچه فعالیت های قبلی کاربر دارد، سعی می کند موضوع لیست را به گونه ای قابل درک و شخصی سازی شده در قالب یک توضیح همراه با لیست پیشنهادشده نمایش دهد. پس از جمع آوری یک مجموعه داده واقعی از شبکه توئیتر، با انجام آزمایش ها نشان داده شد که مدل پیشنهادی قادر به تولید توضیح برای درصد بالایی از پیشنهادهای ایجادشده براساس یک مدل پیشنهاددهنده پایه می ب اشد.
کلیدواژه ها:
نویسندگان
گروه مهندسی کامپیوتر، دانشگاه فردوسی مشهد
عضو هیات علمی
گروه مهندسی کامپیوتر، دانشگاه فردوسی مشهد
استاد