A numerical method based on the radial basis functions for solving nonlinear two-dimensional Volterra integral equations of the second kind on non-rectangular domains
محل انتشار: مجله مدلسازی ریاضی، دوره: 12، شماره: 4
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 100
فایل این مقاله در 19 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-12-4_006
تاریخ نمایه سازی: 30 آذر 1403
چکیده مقاله:
In this investigation, a numerical method for solving nonlinear two-dimensional Volterra integral equations is presented. This method uses radial basis functions (RBFs) constructed on scattered points as a basis in the discrete collocation method. Therefore, the method does not need any background mesh or cell structure of the domain. All the integrals that appear in this method are approximated by the composite Gauss-Legendre integration formula. This method transforms the source problem into a system of nonlinear algebraic equations. Error analysis is presented for this method. Finally, numerical examples are included to show the validity and efficiency of this technique.
کلیدواژه ها:
radial basis functions ، nonlinear two-dimensional Volterra integral equations ، meshless method ، non-rectangular domains
نویسندگان
Mohsen Jalalian
Department of Mathematics, Ilam University, P.O. Box ۶۹۳۱۵۵۱۶, Ilam, Iran
Kawa Ali
Department of Mathematics, College of Education ,University of Garmian, Kurdistan Region-Iraq
Sarkawt Qadir
Department of Mathematics, College of Education, University of Garmian, Kurdistan Region-Iraq
Mohamad Reza Jalalian
Faculty of Humanities, Islamic Azad University, Ilam Branch, Ilam, Iran