Special approximation method for solving system of ordinary and fractional integro-differential equations
محل انتشار: مجله مدلسازی ریاضی، دوره: 12، شماره: 4
سال انتشار: 1403
نوع سند: مقاله ژورنالی
زبان: انگلیسی
مشاهده: 101
فایل این مقاله در 18 صفحه با فرمت PDF قابل دریافت می باشد
- صدور گواهی نمایه سازی
- من نویسنده این مقاله هستم
استخراج به نرم افزارهای پژوهشی:
شناسه ملی سند علمی:
JR_JMMO-12-4_012
تاریخ نمایه سازی: 30 آذر 1403
چکیده مقاله:
This paper concerns with some special approximate methods in order to solve the system of ordinary and the fractional integro-differential equations. The approach that we use begins by a method of converting the fractional integro-differential equations into an integral equation including both Volterra and the Fredholm parts. Then a specific successive approximation technique is applied to the Volterra part. Due to the presence of the factorial factor in the denominator of its kernel, the Volterra part tends to zero in the next iterations, leading us to discard the Volterra's sentence as an error of the method that we use. The analytical-approximate solution to the problem is then obtained by solving the resulting equation, as a Fredholm integral equation of the second kind. This method is applied to the boundary value problems in two distinct cases involving system of ordinary and fractional differential equations.
کلیدواژه ها:
System of ordinary differential equations ، boundary value problems ، Successive approximations ، fractional integro-differential equations
نویسندگان
Mohammad Jahanshahi
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Eisa Sefidi
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran
Ali Khani
Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran